Log in

Influence of incorporation of Fe2O3 content on the structural and the dielectric relaxation properties of lithium boro-vanadate oxide glass: toward ideal cathode glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the impact of substituting an intermediate oxide, Fe2O3, for a former glass network oxide, B2O3, on the structure and electrical properties of lithium vanadate borate glass has been assessed. Using the traditional fast quenching technique, six samples were prepared by introducing Fe2O3 at the expense of B2O3 at rates x = 0, 5, 10, 15, 20, and 25. The amorphous nature of the prepared solids was confirmed based on the X-ray diffraction (XRD) patterns. A rise in the concentration of BO3 groups was seen at the expense of BO4 groups, according to Fourier-transform infrared (FTIR) spectral analysis. Additionally, the FTIR designated little amounts of Fe and V cations that participated in the glass matrix as glass network formers. As the Fe2O3 content increased, the bulk density also increased, while the glass molar volume and the interatomic spacing decreased. The electrical characterization declared an increase in the magnitudes of both the frequency-dependent and frequency-independent conductivities. One semi-circle was visible in the electric modulus spectrum, indicating a single relaxation process that adhered to the Debye model for the dielectric relaxation. According to the simulation results, the correlated barrier hop** model best describes the conduction mechanism in the examined glasses. It was discovered that the prepared glasses electronic conductivity hindered their ionic conductivity, suggesting that these glasses would make ideal cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting this study's findings are available from the corresponding author upon reasonable request.

References

  1. W.M. Stanley, Lithium batteries and cathode materials. Chem Rev. 35, 4271e301 (2004)

    Google Scholar 

  2. V. Mathew, S. Kim, J. Kang, J. Gim, J. Song, J.P. Baboo, W. Park, D. Ahn, J. Han, G. Lin, Amorphous iron phosphate:potential host for various charge carrier ions. NPG Asia Mater. 6, e138 (2014). https://doi.org/10.1038/am.2014.98

    Article  Google Scholar 

  3. P. Jozwiak, J.E. Garbarczyk, Mixed electronic–ionic conductivity in the glasses of the Li2O–V2O5–P2O5 system. Solid State Ionics 176(25–28), 2163–2166 (2005). https://doi.org/10.1016/j.ssi.2004.06.028

    Article  Google Scholar 

  4. R.J. Barczyński, P. Król, L. Murawski, AC and DC conductivities in V2O5–P2O5 glasses containing alkaline ions. J Non-Cryst Solids. 356e, 1965–1967 (2010). https://doi.org/10.1016/j.jnoncrysol

    Article  ADS  Google Scholar 

  5. H. Takahashi, T. Karasawa, T. Sakuma, J.E. Garbarczyk, Electrical conduction in the vitreous and crystallized Li2O–V2O5–P2O5 system. Solid State Ionics 181(1–2), 27–32 (2010). https://doi.org/10.1016/j.ssi.2009.12.001

    Article  Google Scholar 

  6. R. Hisam, A.K. Yahya, H.M. Kamari, Z.A. Talib, AC conductivity and dielectric behavior in mixed electronic-ionic 30Li2O–4MoO3–(66–x)TeO2–xV2O5 glass system. Ionics 23(6), 1423–1427 (2017). https://doi.org/10.1007/s11581-017-1973-5

    Article  Google Scholar 

  7. S. Dahiya, R. Punia, S. Murugavel, A.S. Maan, Temperature and frequency dependent conductivity of lithium doped bismuth zinc vanadate semiconducting glassy system. Indian J Phys 88(11), 1169–1137 (2014). https://doi.org/10.1007/s12648-014-0557-8

    Article  ADS  Google Scholar 

  8. S. Dahiya, R. Punia, S. Murugavel, A.S. Maan, Structural and other physical properties of lithium doped bismuth zinc vanadate semiconducting glassy system. J Mol Struct 1079, 189–193 (2015). https://doi.org/10.1016/j.molstruc.2014.09.047

    Article  ADS  Google Scholar 

  9. B.C. Sales, L.A. Boatner, Physical and chemical characteristics of lead-iron phosphate nuclear waste glasses. J. Non-Cryst. Solids 79, 83–116 (1986)

    Article  ADS  Google Scholar 

  10. Y.B. Peng, D.E. Day, High thermal expansion phosphate glasses. Part 1. Glass Technol. 32, 166–173 (1991)

    Google Scholar 

  11. Aranha N, Alves OL, Barbosa LC, Cesar CL. 1995 Proc. Of XVII Int. Congr. Glass, Bei**g. Ed Chenise Ceramic Soc. Bei**g. 282–286

  12. M. Armand, J.M. Tarascon, Building better batteries. Nature 415, 652e7 (2008)

    Google Scholar 

  13. J.B. Goodenough, P. Kyu-Sung, The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 135, 1167e76 (2013)

    Article  Google Scholar 

  14. G. Delaizir, V. Seznec, P. Rozier, C. Surcin, P. Salles, M. Dolle, Electrochemical performances of vitreous materials in the system Li2O-V2O5-P2O5 as electrode for lithium batteries. Solid State Ionics 237, 22e7 (2013)

    Article  Google Scholar 

  15. S. Afyon, F. Krumeich, C. Mensing, A. Borgschulte, R. Nesper, New high capacity cathode materials for rechargeable Li-ion batteries: vanadate-borate glasses. Sci Rep 4, 7113 (2014)

    Article  ADS  Google Scholar 

  16. C. Delmas, H. Cognac-Auradou, J.M. Cocciantelli, M. Men etrier, J.P. Doumerc, The LixV2O5 system: an overview of the structure modifications induced by the lithium intercalation. Solid State Ionics 69, 25764 (1994)

    Article  Google Scholar 

  17. C.F. Armer, J.S. Yeoh, X. Li, A. Lowe, Electrospun vanadium-based oxides as electrode materials. J. Power Sources 395, 414–429 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.076

    Article  ADS  Google Scholar 

  18. M. Du, K. Huang, Y. Guo, Z. **e, H. Jiang, C. Li, Y. Chen, High specific capacity lithium ion battery cathode material prepared by synthesizing vanadate-phosphate glass in reducing atmosphere. J. Power Sources 424, 91–99 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.106

    Article  ADS  Google Scholar 

  19. G. Delaizir, V. Seznec, P. Rozier, C. Surcin, P. Salles, M. Dolle, Electrochemical performances of vitreous materials in the system Li2O-V2O5-P2O5 as electrode for lithium batteries. Solid State Ion. 237, 22–27 (2013). https://doi.org/10.1016/j.ssi.2013.02.006

    Article  Google Scholar 

  20. T. Aoyagi, T. Fujieda, T. Toyama, K. Kono, D. Takamatsu, T. Hirano, T. Naito, Y. Hayashi, H. Takizawa, Electrochemical properties and in-situ XAFS observation of Li2O-V2O5- P2O5-Fe2O3 quaternary-glass and crystallized-glass cathodes. J. Non-Cryst. Solids 453, 28–35 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.09.016

    Article  ADS  Google Scholar 

  21. G.D.L.K. Jayasinghe, M.A.K.L. Dissanayake, P.W.S.K. Bandaranayake, J.L. Souquet, D. Foscallo, Solid State Ionics 121, 19 (1999)

    Article  Google Scholar 

  22. J.E. Garbarczyk, M. Wasiucionek, P. Jozwiak, L. Tykarski, J. Nowinski, Solid State Ionics 154–155, 367 (2002)

    Article  Google Scholar 

  23. M.C. Ungureanu, M. Levy, J.L. Souquet, Ionics 4(3–4), 200 (1998)

    Article  Google Scholar 

  24. J.C. Bazan, J.A. Duffy, M.D. Ingram, M.R. Mallace, Solid State Ionics 86–88, 497 (1996)

    Article  Google Scholar 

  25. G.D.I.K. Jayasinghe, M.A.K.L. Dissanayake, M.A. Careem, J.L. Souquet, Solid State Ionics 93, 291 (1997)

    Article  Google Scholar 

  26. L. Bih, M.E. Omari, J.M. Reau, A. Nadiri, A. Yacoubi, M. Haddad, Mater. Lett. 50, 308 (2001)

    Article  Google Scholar 

  27. L. Bih, M.E. Omari, J.M. Reau, M. Haddad, D. Boudlich, A. Yacoubi, A. Nadiri, Solid State Ionics 132, 71 (2000)

    Article  Google Scholar 

  28. M. Saeid, A.M. Elkatlawy, I.S. Abdel-Ghany, H.A. Yahia, A. El-Ghany, H.M. Gomaa, Structure–property relationship and spectroscopic studies of BaO–B2O3 oxide glasses containing ZnO for optical applications. Boletín Soc Española Cerámica Vidrio (2021). https://doi.org/10.1016/j.bsecv.2021.08.003

    Article  Google Scholar 

  29. M.K. El-Mansy, H.M. Gomaa, N. Hendawy, A. Sabry Morsy, Effect of exchange of Bi+3 b y Nb+5 on the structural and optical properties of some (BBiNb)2 O7 CaO oxide glasses. J Non-Crystall Sol. 485, 42–46 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.01.036

    Article  ADS  Google Scholar 

  30. M. Hossam, Gomaa, Influence of Bi2O3 on the physical and electrical properties of some Boro-Iron glasses. J. Non-Cryst. Solids 481, 51–58 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.10.012

    Article  Google Scholar 

  31. S.M. Kamil, H.M. Gomaa, W. El-Gammal et al., Effect of exchanging PbO with NiO on the structure and optical parameters action of some lanthanum borate oxide glasses. J Mater Sci: Mater Electron 32, 24168–24175 (2021). https://doi.org/10.1007/s10854-021-06882-7

    Article  Google Scholar 

  32. H.A. Saudi, H.M. Gomaa, M.I. Sayyed et al., Investigation of bismuth silicate glass system modified by vanadium and copper cations for structural and gamma-ray shielding properties. SN Appl. Sci. 1, 218 (2019). https://doi.org/10.1007/s42452-019-0197-x

    Article  Google Scholar 

  33. M. Kindle, S. Kmiec, Id.A. Silva, H. Eckert, S.W. Martin, M.-K. Song, J.S. McCloy, Structural properties of alumina-doped lithium borovanadate glasses and glass-ceramics. J Non-Crystall Sol. 521, 119551 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119551

    Article  Google Scholar 

  34. U. Hoppe, A. Ghosh, S. Feller, A.C. Hannon, D.A. Keen, J Neuefeind, Structural units of binary vanadate glasses by X-ray and neutron diffraction. J Non-Crystall Sol. 572, 121120 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121120

    Article  Google Scholar 

  35. E.A. Abdel Wahab, K.S. Shaaban, Structural and optical features of aluminum lead borate glass doped with Fe2O3. Appl. Phys. A. 127, 956 (2021). https://doi.org/10.1007/s00339-021-05062-y

    Article  ADS  Google Scholar 

  36. D.P. Singh, Gurinder Pal Singh, Conversion of covalent to ionic behavior of Fe2O3–CeO2–PbO–B2O3 glasses for ionic and photonic application. J. Alloy. Compd. 546, 224–228 (2013). https://doi.org/10.1016/j.jallcom.2012.08.105

    Article  Google Scholar 

  37. G.P. Singh, P. Kaur, S. Kaur, D.P. Singh, Gamma ray effect on the covalent behaviour of the CeO2–BaO–B2O3 glasses. Phy B Condens Matt. 450, 106–110 (2014). https://doi.org/10.1016/j.physb.2014.05.017

    Article  ADS  Google Scholar 

  38. A.M. Abdel-Ghany, A.S. Abu-Khadra, M.S. Sadeq, Influence of Fe cations on the structural and optical properties of alkali-alkaline borate glasses. J Non-Crystall Sol. 548, 120320 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120320

    Article  Google Scholar 

  39. F. Tian, Y. Ohki, Electric modulus powerful tool for analyzing dielectric behavior. IEEE Trans. Dielectr. Electr. Insul. 21(3), 929–931 (2014). https://doi.org/10.1109/TDEI.2014.6832233

    Article  Google Scholar 

  40. A.A. Saif, P. Poopalan, AC conductivity and dielectric relaxation behavior of sol-gel BaxSr1-xTiO3 thin films. Mater. Sci. Technol. 27, 802–808 (2011)

    Article  Google Scholar 

  41. M. Shapaan, F.M. Ebrahim, Structural and electric–dielectric properties of B2O3–Bi2O3–Fe2O3 oxide glasses. Physica B 405(16), 3217–3222 (2010). https://doi.org/10.1016/j.physb.2010.04.046

    Article  ADS  Google Scholar 

  42. R.J. Barczynski, L. Murawski, Mixed electronic–ionic conductivity in transition metal oxide glasses containing alkaline ions. J. Non-Cryst. Solids 307, 1055 (2002)

    Article  ADS  Google Scholar 

  43. R.A. Montani, A. Lorente, M.A. Frechero, Efect of Ag2O on the conductive behaviour of silver vanadium tellurite glasses: part II. Solid State Ion. 146, 323 (2002)

    Article  Google Scholar 

  44. H.M. Gomaa, T.H. AlAbdulaal, I.S. Yahia et al., Exploring the optical and electrical properties of 70%PVP/30%PVA blend polymer do** with graphene thin films for optoelectronics applications. J. Electron. Mater. 51, 5897–5907 (2022). https://doi.org/10.1007/s11664-022-09842-x

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Research Center for Advanced Materials Science (RCAMS)” at King Khalid University, Saudi Arabia, for funding this work under the grant number RCAMS/KKU/017-22.

Author information

Authors and Affiliations

Authors

Contributions

HMG: Conceptualization, Software, and Formal Analysis. HMG, AMM, ASA-M, AAB: Visualization and Resources. Data Curation, Writing—Review & Editing. HMG: Methodology, Writing—Review and Editing, and Project administration. ISY and SHZ: Project Administration and Funding Acquisition. HMG: Supervision.

Corresponding author

Correspondence to Hosam M. Gomaa.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article doesn’t contain any studies involving animals performed by any authors. Also, this article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomaa, H.M., Moneep, A.M., Abdel-Moety, A.S. et al. Influence of incorporation of Fe2O3 content on the structural and the dielectric relaxation properties of lithium boro-vanadate oxide glass: toward ideal cathode glasses. Appl. Phys. A 129, 70 (2023). https://doi.org/10.1007/s00339-022-06350-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06350-x

Keywords

Navigation