Log in

Investigation on Y2NiMnO6 nanostructures for energy storage applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this present work, the double perovskite Y2NiMnO6 nanostructures had been successfully synthesized through the hydrothermal route. Using various characterization techniques, the structural, morphological, impedance, dielectric, electrochemical, and magnetic properties were analyzed. The monoclinic (P21/n) structure of the prepared Y2NiMnO6 was confirmed using powder X-ray diffraction. Results from the scanning electron microscope showed the formation of Y2NiMnO6 nanostructures. TEM image of Y2NiMnO6 nanoparticles revealed d-spacing of 0.56 nm and selected area electron diffraction pattern showed (311) plane for Y2NiMnO6. Fast Fourier transform (FFT) analysis was performed on the lattice fringes and the diffraction spots indexed to the cubic spinel. The dielectric, impedance, modulus, and AC conductivity of the synthesized double perovskite Y2NiMnO6 were studied in the frequency range of 100 Hz–5 MHz at room temperature. The effect of grain and grain boundary was analyzed by the Nyquist plot. The presence of non-Debye type of relaxation was confirmed from the dielectric, impedance, and modulus studies. The elaborated studies of complex impedance spectra provided the basis to understand the electrical properties, which had strong relations with the microstructure and resistive nature of the prepared material. The electrochemical behavior of the prepared Y2NiMnO6 with three-electrode system was found to have pseudocapacitive nature with the specific capacitance value 8.633 F/g for 0.5 M KOH, 75.476 F/g for 1 M KOH, and 78.201 F/g for 2 M KOH at the scan rate of 10 mV/s. The specific capacitance values were improved by increasing the concentration of electrolyte. The vibration sample magnetometer of the synthesized Y2NiMnO6 shows the paramagnetic behavior at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

Datas pertaining towards characterisations are already included in the manuscript. Further datas shall be provided on request due to privacy.

References

  1. A. Kostopoulou, E. Kymakis, E. Stratakis, Perovskite nanostructures for photovoltaic and energy storage devices. J. Mater. Chem. (2018). https://doi.org/10.1039/C8TA01964A

  2. N. Wang, X. Luo, L. Han, Z. Zhang, R. Zhang, H. Olin; Y. Yang, Structure, performance, and application of BiFeO3 nanomaterials. Nanomicro Lett. 12(1), 81 (2020). https://doi.org/10.1007/s40820-020-00420-6

  3. H. Zitouni, N. Tahiri, O. El Bounagui et al., Physical properties of perovskite SrHfO3 compound doped with S for photovoltaic applications: the ab initio study. Appl. Phys. A 126, 800 (2020). https://doi.org/10.1007/s00339-020-03987-4

    Article  ADS  Google Scholar 

  4. A. Xukeer, Wu. Zhaofeng, Q. Sun, F. Zhong, M. Zhang, M. Long, H. Duan, Enhanced gas sensing performance of Perovskite YFe1xMnxO3 by do** manganese ions. RSC Adv. 10(51), 30428–30438 (2020). https://doi.org/10.1039/d0ra01375g

    Article  ADS  Google Scholar 

  5. A.J. Preethi, M. Ragam, Effect of do** in multiferroic BFO: a review. J. Adv. Dielect. 11(6), 2130001 (2021). https://doi.org/10.1142/S2010135X21300012

  6. J. Singh, A. Kumar, A. Kumar, Facile solvothermal synthesis of nano-assembled mesoporous rods of cobalt free—La2NiFeO6 for electrochemical behaviour. Mater. Sci. Eng. B 261, 114664 (2020). https://doi.org/10.1016/j.mseb.2020.114664

    Article  Google Scholar 

  7. T. Jia, Z. Zeng, H.Q. Lin, The collinear↑↑↓↓ magnetism driven ferroelectricity in double-Perovskite multiferroics. J. Phys. Conf. Ser. 827(1), 012005 (2017). https://doi.org/10.1088/1742-6596/827/1/012005

  8. R.J. Booth, Fillman R., Whitaker H., A. Nag, R.M. Tiwari, K.V. Ramanujachary, J. Gopalakrishnan, S.E. Lofland, An investigation of structural, magnetic and dielectric properties of R2NiMnO6 (R = rare earth, Y). Mater. Res. Bull. 44(7), 1559–1564 (2009). https://doi.org/10.1016/j.materresbull.2009.02.003

  9. M. Filho, R. Bezerra, A.P. Ayala, C.W. de Araujo Paschoal, Spin-phonon coupling in Y2NiMnO6 double perovskite probed by Raman spectroscopy. Appl. Phys. Lett. 102(19), 192902 (2013)

  10. J. Su, Z.Z. Yang, X.M. Lu, J.T. Zhang, L. Gu, C.J. Lu, Q.C. Li, J.-M. Liu, J.S. Zhu, Magnetism-driven ferroelectricity in double perovskite Y2NiMnO6. ACS Appl. Mater. Interfaces 7(24), 13260–13265 (2015). https://doi.org/10.1021/acsami.5b00911

  11. Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen, M. Li, Hydrothermal synthesis of nanomaterials. J. Nanomat. 2020, 1 (2020)

  12. R. Datta, S.K. Pradhan, S. Chatterjee, S. Majumdar, S.K. De, Dielectric and impedance spectroscopy of Sm2CoIrO6 double perovskite. J. Alloys Compd. 876, 160158 (2021). https://doi.org/10.1016/j.jallcom.2021.160158

  13. M. Alam, K. Karmakar, M. Pal, K. Mandal, Electrochemical supercapacitor based on double perovskite Y2NiMnO6 nanowires. RSC Adv 6(115), 114722–114726 (2016). https://doi.org/10.1039/C6RA23318J

  14. J.B. Philipp, P. Majewski, L. Alff, A. Erb, R. Gross, T. Graf, M.S. Brandt et al., Structural and do** effects in the half-metallic double perovskite A2CrWO6 (A= Sr, Ba, and Ca). Phys. Rev. B 68(14), 144431 (2003). https://doi.org/10.1103/PhysRevB.68.144431

    Article  ADS  Google Scholar 

  15. R.P. Maiti, S. Dutta, M. Mukherjee, M.K. Mitra, D. Chakravorty, Magnetic and dielectric properties of sol–gel derived nanoparticles of double perovskite Y2NiMnO6. J. Appl. Phys. 112(4), 044311 (2012). https://doi.org/10.1063/1.4748058

  16. R. Das, R.N.P. Choudhary, Dielectric relaxation and magneto-electric characteristics of lead-free double perovskite: Sm2NiMnO6. J. Adv. Ceram. 8(2), 174–185 (2019). https://doi.org/10.1007/s40145-018-0303-3

  17. N. Ahmad, S. Khan, M.M.N. Ansari, Exploration of Raman spectroscopy, dielectric and magnetic properties of (Mn, Co) co-doped SnO2 nanoparticles. Physica B 558, 131–141 (2019). https://doi.org/10.1016/j.physb.2019.01.044

    Article  ADS  Google Scholar 

  18. N. Ahmad, S. Khan, M. Mohsin, N. Ansari, Optical, dielectric and magnetic properties of Mn doped SnO2 diluted magnetic semiconductors. Ceram. Int. 44, 15972–15980 (2018). https://doi.org/10.1016/j.ceramint.2018.06.024

    Article  Google Scholar 

  19. N. Panda, B.N. Parida, R. Padhee, R.N.P. Choudhary, Structural, dielectric and electrical properties of the Ba2BiNbO6 double perovskite. J. Mater. Sci. Mater. Electron. 26(6), 3797–3804 (2015). https://doi.org/10.1007/s10854-015-2905-7

  20. R. Das, R.N.P. Choudhary, Studies of structural, dielectric relaxor and electrical characteristics of lead-free double perovskite: Gd2NiMnO6. Solid State Sci. 87, 1–8 (2019). https://doi.org/10.1016/j.solidstatesciences.2018.10.020

  21. P. Achary, S.K. Dehury, R.N.P. Choudhary, Structural, electrical and dielectric properties of double perovskites: BiHoZnZrO6 and BiHoCuTiO6. J. Mater. Sci. Mater. Electron. 29(8), 6805–6816 (2018)

  22. M. Amin, H.M. Rafique, G.M. Mustafa, A. Mahmood, S.M. Ramay, S. Atiq, S.M. Ali, Effect of La/Cr co-do** on dielectric dispersion of phase pure BiFeO3 nanoparticles for high frequency applications. J. Mater. Res. Technol. 13, 1534–1545 (2021). https://doi.org/10.1016/j.jmrt.2021.05.066

  23. A. Priyanka, K. Jha, Electrical characterization of zirconium substituted barium titanate using complex impedance spectroscopy. Bull. Mater. Sci. 36(1), 135–141 (2013). https://doi.org/10.1007/s12034-013-0420-0

  24. W.Z. Yang, X.Q. Liu, H.J. Zhao, Y.Q. Lin, X.M. Chen, Structure, magnetic, and dielectric characteristics of Ln2NiMnO6 (Ln = Nd and Sm) ceramics. J. Appl. Phys. 112(6), 064104 (2012). https://doi.org/10.1063/1.4752262

    Article  ADS  Google Scholar 

  25. S. Hajra, S. Sahoo, R. Das, R.N.P. Choudhary, Structural, dielectric and impedance characteristics of (Bi0.5Na0.5) TiO3-BaTiO3 electronic system. J. Alloys Compd 750, 507–514 (2018)

  26. D.K. Mahato, A. Dutta, T.P. Sinha, Dielectric relaxation and ac conductivity of double perovskite oxide Ho2ZnZrO6. Phys. B Condens. Matter 406(13), 2703–2708 (2011). https://doi.org/10.1016/j.physb.2011.04.012

  27. M. Li, F. Liu, X. Zhang, J.P. Cheng, Comparative study of Ni–Mn layered double hydroxide/carbon composites with different morphologies for supercapacitor. Phys. Chem. Chem. Phys. (2016). https://doi.org/10.1039/c6cp05119g

  28. J. Singh, A. Kumar, Solvothermal synthesis dependent structural, morphological and electrochemical behaviour of mesoporous nanorods of Sm2NiMnO6. Ceram. Int. 46(8), 11041–11048 (2020)

    Article  Google Scholar 

  29. J. Singh, A. Kumar, A. Kumar, Facile wet chemical synthesis and electrochemical performance of double perovskite-La2NiMnO6 for energy storage application. Mater. Today Proc. 48, 587–589 (2022). https://doi.org/10.1016/j.matpr.2021.05.231

    Article  Google Scholar 

  30. J. Singh, I. Rogge, U.K. Goutam, A. Kumar, Mesoporous spheres of Dy2NiMnO6 synthesized via hydrothermal route for structural, morphological, and electrochemical investigation. Ionics 26(10), 5143–5153 (2020)

  31. H.Z. Guo, A. Gupta, T.G. Calvarese, M.A. Subramanian, Structural and magnetic properties of epitaxial thin films of the ordered double perovskite La2Co MnO6. Appl. Phys. Lett. 89(26), 262503 (2006). https://doi.org/10.1063/1.2422878

    Article  ADS  Google Scholar 

  32. E. Granado, Q. Huang, J.W. Lynn, J. Gopalakrishnan, R.L. Greene, K. Ramesha, Spin-orbital ordering and mesoscopic phase separation in the double perovskite Ca2FeReO6. Phys. Rev. B 66(6), 064409 (2002)

    Article  ADS  Google Scholar 

  33. M.P. Singh, S. Charpentier, K.D. Truong, P. Fournier, Evidence of bidomain structure in double-perovskite La2CoMnO6 thin films. Appl. Phys. Lett. 90(21), 211915 (2007). https://doi.org/10.1063/1.2743387

  34. F. de Azevedo, B. João, R.F. Souza, J.C.A. Queiroz, T.H.C. Costa, C.P.S. Sena, S.G.C. Fonseca, A.O. da Silva, J.B.L. Oliveira, Theoretical and experimental investigation of the structural and magnetic properties of La2NiMnO6. J. Magn. Magn. Mater. 527, 167770 (2021). https://doi.org/10.1016/j.jmmm.2021.167770

  35. H. Nhalil, H.S. Nair, C.M.N. Kumar, A.M. Strydom, S. Elizabeth, Ferromagnetism and the effect of free charge carriers on electric polarization in the double perovskite Y2NiMnO6. Phys. Rev. B 92(21), 214426 (2015). https://doi.org/10.1103/PhysRevB.92.214426

  36. A. Kaippamagalath, J.P. Palakkal, A.P. Paulose, M.R. Varma, Structural and magnetic properties of multiferroic Y2NiMnO6 double perovskite. Ferroelectrics 518(1), 223–231 (2017). https://doi.org/10.1080/00150193.2017.1360679

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sharmili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharmili, T., Joana Preethi, A., Vigneshwaran, J. et al. Investigation on Y2NiMnO6 nanostructures for energy storage applications. Appl. Phys. A 129, 49 (2023). https://doi.org/10.1007/s00339-022-06322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06322-1

Keywords

Navigation