Log in

Effects of Y2O3 and Cr3C2 on the microstructure and properties of WC–Co–Ni alloy prepared by microwave sintering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

WC–9Co–1Ni cemented carbides with Y2O3 and Cr3C2 additives were obtained through powder metallurgy and microwave sintering. The effects of additives on the microstructure and properties were investigated by scanning electron microscopy, X-ray diffraction, mechanical property tests and electrochemical tests. The results showed that the grain size of WC decreased from 558 nm to 443/450 nm after adding Y2O3 or Cr3C2 additives, respectively. The hardness and transverse rupture strength of alloys were greatly enhanced when the contents of Y2O3 or Cr3C2 additives were 0.50 wt.%. Compared with the WC–9Co–1Ni cemented carbide, the wear rate of cemented carbide with 0.50 wt.% Y2O3 or Cr3C2 was reduced by 31.48% and 31.65%, respectively. Meanwhile, both Y2O3 and Cr3C2 additives could effectively improve the anti-corrosion performance of WC–9Co–1Ni cemented carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Q.M. Yang, J.G. Yang, Y. Wen, Q.Y. Zhang, L.Y. Chen, H. Chen, A novel route for the synthesis of ultrafine WC-15wt.%Co cemented carbides. J. Alloys Compd. 748, 577–582 (2018)

    Article  Google Scholar 

  2. R.V. Gădălean, O.-D. Jucan, H.F. Chicinaş, N. Bâlc, C.O. Popa, Additive manufacturing of WC–Co by indirect selective laser sintering (SLS) using high bulk density powders. Arch. Metall. Mater. 67(2), 577–585 (2022)

    Google Scholar 

  3. N. Al-Aqeeli, Characterization of nano-cemented carbides co-doped with vanadium and chromium carbides. Powder Technol 273, 47–53 (2015)

    Article  Google Scholar 

  4. B.X. Liu, A.H. Shi, Q. Su, G.G. Chen, W. Li, L. Zhang, B. Yang, Recovery of tungsten carbides to prepare the ultrafine WC–Co composite powder by two-step reduction process. Powder Technol 306, 113–119 (2017)

    Article  Google Scholar 

  5. Z.Y. ** on FCC to HCP phase transformation in cobalt produced by ball milling and spark plasma sintering. Powder Technol 324, 1–4 (2018)

    Article  Google Scholar 

  6. C. Huang, W.W. **g, S.D. Guo, Y. Ye, Y. Wen, Y.X. Wu, S.L. Wang, X. Huang, J.B. Zhang, Effects of micro/nano CeO2 on the microstructure and properties of WC-10Co cemented carbides. Int. J. Refract. Metals Hard Mater. 95, 105432 (2020)

    Google Scholar 

  7. Z.X. Guo, J. **ong, M. Yang, S.J. **ong, J.Z. Chen, S.Q. Bi, Characterization and properties of MTCVD Ti(C, N) coated cemented carbide substrates with Fe/Ni binder. Int. J. Refract. Metals Hard Mater. 28, 238–242 (2010)

    Article  Google Scholar 

  8. C.M. Fernandes, L.M. Vilhena, C.M. Pinho, F.J. Oliveira, E. Soares, J. Sacramento, A.M. Senos, Mechanical characterization of WC-10 wt.% AISI304 cemented carbides. Mater. Sci. Eng. A. 618, 629–636 (2014)

    Article  Google Scholar 

  9. X.M. Liu, H.B. Wang, X.Y. Song, R. Moscatelli, Elastic modulus of nanocrystalline cemented carbide. T. Nonferr. Metal Soc. China. 28, 966–973 (2018)

    Article  Google Scholar 

  10. K.H. Shi, K.C. Zhou, Z.Y. Li, D. Zhang, X.Q. Zan, Microstructure and formation process of Ni-pool defect in WC-8Ni cemented carbides. T. Nonferr. Metal Soc. China. 25, 873–878 (2015)

    Article  Google Scholar 

  11. S.H. Chang, M.H. Chang, K.T. Huang, Study on the sintered characteristics and properties of nanostructured WC-15 wt% (Fe–Ni–Co) and WC-15 wt% Co hard metal alloys. J. Alloys Compd. 649, 89–95 (2015)

    Article  Google Scholar 

  12. Y. Liu, X. Li, J. Zhou, K. Fu, W. Wei, M. Du, X. Zhao, Effects of Y2O3 addition on microstructures and mechanical properties of WC–Co functionally graded cemented carbides. Int. J. Refract. Metals Hard Mater. 50, 53–58 (2015)

    Article  Google Scholar 

  13. L. Zhang, C. Shu, J. Wang, X.W. Yu, X.J. **ong, Tungsten carbide platelet-containing cemented carbide with yttrium containing dispersed phase. Trans. Nonferrous Met. Soc. China. 18, 104–108 (2008)

    Article  Google Scholar 

  14. A.M. Omayma, O.A. El-Kady, Effect of nano-yttria addition on the properties of WC/Co composites. Mater. Des. 52, 481–486 (2013)

    Article  Google Scholar 

  15. Y. Gao, B.H. Luo, K.J. He, W.W. Zhang, Z.H. Bai, Effect of Fe/Ni ratio on the microstructure and properties of WC–Fe–Ni–Co cemented carbides. Ceram. Int. 44, 2030–2041 (2018)

    Article  Google Scholar 

  16. N.A.N. Balbino, E.O. Correa, C.L. de Valeriano, Development of the 90WC-8Ni-2Cr3C2 cemented carbide for engineering applications. Int. J. Adv. Manuf. Technol. 99, 1653–1660 (2018)

    Article  Google Scholar 

  17. W. Su, Y.X. Sun, J. Liu, J. Feng, J.M. Ruan, Effects of Ni on the microstructures and properties of WC-6Co cemented carbides fabricated byWC-6(Co, Ni) composite powders. Ceram. Int. 41, 3169–3177 (2015)

    Article  Google Scholar 

  18. Z. Du, D. Lü, Thermodynamic modelling of the Co–Y system. J. Alloys Compd. 373, 171–178 (2004)

    Article  Google Scholar 

  19. J.D.R. Buitrago, A.F.G. Plazas, L.K.H. Quintero, Influence of TiC and Cr3C2 additions on the mechanical properties of a (W–Ti–Cr) C–Co sintered hardmetal. J. Mater. Res. Technol. 8, 5736–5744 (2019)

    Article  Google Scholar 

  20. S.D. Guo, R. Bao, J.G. Yang, H. Chen, J. Yi, Effect of Mo and Y2O3 additions on the microstructure and properties of fine WC–Co cemented carbides fabricated by spark plasma sintering. Int. J. Refract. Metals Hard Mater 69, 1–10 (2017)

    Article  Google Scholar 

  21. Y. Gao, B.H. Luo, K.J. He, H.B. **g, Z.H. Bai, W. Chen, W.W. Zhang, Mechanical properties and microstructure of WC–Fe–Ni–Co cemented carbides prepared by vacuum sintering. Vacuum 143, 271–282 (2017)

    Article  ADS  Google Scholar 

  22. H. Tian, M. Zhang, Y. Peng, Y. Du, P. Zhou, Sintering behavior and mechanical properties of Cr3C2 doped ultra-fine WC–Co cemented carbides: experiment guided with thermodynamic calculations. Int. J. Refract. Metals Hard Mater. 78, 240–246 (2019)

    Article  Google Scholar 

  23. H. Tian, Y. Peng, Y. Du, Y. Zhang, S. Zhang, J. Zheng, Optimization of the mechanical properties of ultra-fine WC–Co–Cr3C2 cemented carbides via an approach based on thermodynamic calculations and characterization of the experimental results by the Weibull distribution. Calphad 70, 101778 (2020)

    Article  Google Scholar 

  24. R.M. Raihanuzzaman, S.T. Han, R. Ghomashchi, H.S. Kim, S.J. Hong, Conventional sintering of WC with nano-sized Co binder: Characterization and mechanical behavior. Int. J. Refract. Met. Hard Mater. 53, 2–6 (2015)

    Article  Google Scholar 

  25. X. Zhang, J. Zhou, N. Lin, K. Li, K. Fu, B. Huang, Y. He, Effects of Ni addition and cyclic sintering on microstructure and mechanical properties of coarse grained WC-10Co cemented carbides. Int. J. Refract. Met. Hard Mater. 57, 64–69 (2016)

    Article  Google Scholar 

  26. S. Guo, R. Bao, S. Li, Y. Ye, E. Zhu, W. Wang, Y. Zhang, H. Chen, Y. Ye, The role of Y2O3, Cu, Mo and Mo2C additives on optimizing the corrosion resistance of WC-6Co cemented carbide in HCl and NaOH solutions. J. Alloys Compd. 827, 154269 (2020)

    Article  Google Scholar 

  27. Z.B. Yinn, J.T. Yuan, Z.H. Wang, H.P. Hu, Y. Cheng, X.Q. Hu, Preparation and properties of an Al2O3/Ti (C, N) micro-nano-composite ceramic tool material by microwave sintering. Ceram. Int. 42, 4099–4106 (2016)

    Article  Google Scholar 

  28. J.M. Tarragó, E. Jiménez-Piqué, L. Schneider, D. Casellas, Y. Torres, L. Llanes, FIB/FESEM experimental and analytical assessment of R-curve behavior of WC–Co cemented carbides. Mater. Sci. Eng. A. 645, 142–149 (2015)

    Article  Google Scholar 

  29. L. Chipise, P.K. Jain, L.A. Cornish, Influence of Ru on the hardness and fracture toughness of WC–VC–Co alloys. Int. J. Refract. Metals Hard Mater. 77, 54–60 (2018)

    Article  Google Scholar 

  30. W.W. Xu, X.Y. Song, N.D. Lu, C. Huang, Thermodynamic and experimental study on phase stability in nanocrystalline alloys. Acta. Mater. 58, 396–407 (2010)

    Article  ADS  Google Scholar 

  31. A.M. Soleimanpour, P. Abachi, A. Simchi, Microstructure and mechanical properties of WC-10Co cemented carbide containing VC or (Ta, Nb) C and fracture toughness evaluation using different models. Int. J. Refract. Metals Hard Mater. 31, 141–146 (2012)

    Article  Google Scholar 

  32. J. Wang, D. Zuo, L. Zhu, W. Li, Z. Tu, S. Dai, Effects and influence of Y2O3 addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 71, 167–174 (2018)

    Article  Google Scholar 

  33. D.H. **ao, Y.H. He, M. Song, N. Lin, R.F. Zhang, Y2O3- and NbC-doped ultrafine WC-10Co alloys by low pressure sintering. Int. J. Refract. Metals Hard Mater. 28, 407–411 (2010)

    Article  Google Scholar 

  34. Y. Yang, L.M. Luo, X. Zan, X.Y. Zhu, L. Zhu, Y.C. Wu, Synthesis of Y2O3-doped WC–Co powders by wet chemical method and its effect on the properties of WC–Co cemented carbide alloy. Int. J. Refract. Metals Hard Mater. 92, 105324 (2020)

    Article  Google Scholar 

  35. F.J.J. Kellner, H. Hildebrand, S. Virtanen, Effect of WC grain size on the corrosion behavior of WC–Co based hardmetals in alkaline solutions. Int. J. Refract. Metals Hard Mater. 27, 806–812 (2009)

    Article  Google Scholar 

  36. H. Chen, Q.M. Yang, J.G. Yang, H.L. Yang, L.Y. Chen, J.M. Ruan, Q.Z. Huang, Effects of VC/Cr3C2 on WC grain morphologies and mechanical properties of WC-6wt.%Co cemented carbides. J. Alloys Compd. 714, 245–250 (2017)

    Article  Google Scholar 

  37. J.M. Marshall, A. Kusoffsky, Binder phase structure in fine and coarse WC–Co hard metals with Cr and V carbide additions. Int. J. Refract. Metals Hard Mater. 40, 27–35 (2013)

    Article  Google Scholar 

  38. Y. Ye, D. Zhang, J. Li, T. Liu, J. Pu, H. Zhao, L. Wang, One-step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane-graphene oxide and its application in anti-corrosion and anti-wear fields. Corros. Sci. 147, 9–21 (2019)

    Article  Google Scholar 

  39. Y. Ye, D. Yang, H. Chen, S. Guo, Q. Yang, L. Chen, H. Zhao, L. Wang, A high-efficiency corrosion inhibitor of N-doped citric acid-based carbon dots for mild steel in hydrochloric acid environment. J. Hazard. Mater. 381, 121019 (2020)

    Article  Google Scholar 

  40. S. Sutthiruangwong, G. Mori, Influence of refractory metal carbide addition on corrosion properties of cemented carbides. Mater. Manuf. Process. 20, 47–56 (2005)

    Article  Google Scholar 

  41. T.J. Mesquita, E. Chauveau, M. Mantel, R.P. Nogueira, A XPS study of the Mo effect on passivation behaviors for highly controlled stainless steels in neutral and alkaline conditions. Appl. Surf. Sci. 270, 90–97 (2013)

    Article  ADS  Google Scholar 

  42. S.D. Guo, W. Yan, J. Yi, S. Wang, X. Huang, S. Yang, Y. Ye, The optimization of mechanical property and corrosion resistance of WC-6Co cemented carbide by Mo2C content. Ceram. Int. 46, 17243–17251 (2020)

    Article  Google Scholar 

  43. S. Sutthiruangwong, G. Mori, Corrosion properties of Co-based cemented carbides in acidic solutions. Int. J. Refract. Metals Hard Mater. 21, 135–145 (2003)

    Article  Google Scholar 

  44. Y. Ye, D. Zhang, T. Liu, Z. Liu, J. Pu, W. Liu, H. Zhao, X. Li, L. Wang, Superior corrosion resistance and self-healable epoxy coating pigmented with silanzied trianiline-intercalated graphene. Carbon 142, 164–176 (2019)

    Article  Google Scholar 

  45. Y. Ye, H. Chen, Y. Zou, Y. Ye, H. Zhao, Corrosion protective mechanism of smart graphene-based self-healing coating on carbon steel. Corros. Sci. 174, 108825 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (51904126), the Key project of Natural Science Foundation of Jiangxi Province (20202ACBL214012), the Postdoctoral Research Foundation of China (2020M682115) and of Jiangxi Province (2019KY29), the Natural Science Foundation of Jiangxi Education Department (GJJ200805), the Foundation Engineering Research Center of Tungsten Resources High-efficiency Development and Application Technology of the Ministry of Education (W-2021ZD001), the Foundation of Key Laboratory of Advanced Materials of Yunnan Province (2020KF004), the Foundation of Collaborative Innovation Center for Development and Utilization of Rare Metal Resources Co-sponsored by Ministry of Education and Jiangxi Province, (JXUST-XTCX-2022-04), the independent project of Jiangxi advanced Copper Industry Research Institute (ZL-202006), Distinguished Professor Program of **ggang Scholars in institutions of higher learning, Jiangxi Province and Jiangxi Province “Double Thousand Plan” science and technology innovation high-end Talent Project (jxsq2019201039).

Funding

Innovative Research Group Project of the National Natural Science Foundation of China, 51904126, Shengda Guo, Natural Science Foundation of Jiangxi Province, 20202ACBL214012, Shengda Guo, Postdoctoral Research Foundation of China, 2020M682115, Shengda Guo.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengda Guo, Hao Chen or Rui Bao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wang, Y., Guo, S. et al. Effects of Y2O3 and Cr3C2 on the microstructure and properties of WC–Co–Ni alloy prepared by microwave sintering. Appl. Phys. A 128, 757 (2022). https://doi.org/10.1007/s00339-022-05908-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05908-z

Keywords

Navigation