Log in

Enhanced electrical outputs of thin-film solar thermoelectric generator with optimized metal/dielectric multilayered solar selective absorber

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In solar thermoelectric generators (STEGs), solar selective absorbers play a vital role in enhancing the light-to-heat conversion efficiency by improving sunlight absorption and reducing heat radiative loss. Nevertheless, the light-to-heat conversion efficiency depends strongly on the operating condition, which needs to be optimized to suit the practical application. In this work, Cr/SiO2-based six-layer solar selective absorber was designed to maximize the photothermal conversion efficiency for the operating temperature of 300 or 600 K and solar concentration ratio of 1 Sun. Series-connected p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3-based planar thin-film STEGs were prepared by shadow-mask-assisted magnetron sputtering with the designed solar selective absorber or black paint as the solar heater. When exposed to a standard solar simulator without any optical concentration, the thin-film STEG with the solar selective absorber optimized for 300 K exhibits the highest electrical outputs (1.3 mV and 0.3 μA), while the STEG with solar absorber designed for 600 K shows a lower outputs, even less than the one with black paint. The results demonstrate that not only the solar absorptance and thermal emittance, but also operating conditions should be particularly considered in designing solar selective absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Zhu, Y. Deng, M. Gao, Y. Wang, Hierarchical Bi–Te based flexible thin-film solar thermoelectric generator with light sensing feature. Energ. Convers. Manage. 106, 1192–1200 (2015)

    Article  Google Scholar 

  2. W. Zhu, Y. Deng, L. Cao, Light-concentrated solar generator and sensor based on flexible thin-film thermoelectric device. Nano Energy 34, 463–471 (2017)

    Article  Google Scholar 

  3. Y.S. Jung, D.H. Jeong, S.B. Kang, F. Kim, M.H. Jeong, K.-S. Lee, J.S. Son, J.M. Baik, J.-S. Kim, K.J. Choi, Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference. Nano Energy 40, 663–672 (2017)

    Article  Google Scholar 

  4. M. Mizoshiri, M. Mikami, K. Ozaki, K. Kobayashi, Thin-film thermoelectric modules for power generation using focused solar light. J. Electron. Mater. 41, 1713–1719 (2012)

    Article  ADS  Google Scholar 

  5. K.W. Mauser, S. Kim, S. Mitrovic, D. Fleischman, R. Pala, K.C. Schwab, H.A. Atwater, Resonant thermoelectric nanophotonics. Nat. Nanotechnol. 12, 770–776 (2016)

    Article  Google Scholar 

  6. W. Zhu, Y. Deng, M. Gao, Y. Wang, J. Cui, H. Gao, Thin-film solar thermoelectric generator with enhanced power output: Integrated optimization design to obtain directional heat flow. Energy 89, 106–117 (2015)

    Article  Google Scholar 

  7. H. Shen, H. Lee, S. Han, Optimization and fabrication of a planar thermoelectric generator for a high-performance solar thermoelectric generator. Curr. Appl. Phys. 22, 6–13 (2021)

    Article  ADS  Google Scholar 

  8. Y. Ito, M. Mizoshiri, M. Mikami, T. Kondo, J. Sakurai, S. Hata, Fabrication of thin-film thermoelectric generators with ball lenses for conversion of near-infrared solar light. Jpn. J. Appl. Phys. 56, 06GN06 (2017)

    Article  Google Scholar 

  9. Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015)

    Article  Google Scholar 

  10. Y. Pan, G. Tagliabue, H. Eghlidi, C. Höller, S. Dröscher, H. Guo, D. Poulikakos, A rapid response thin-film plasmonic-thermoelectric light detector. Sci. Rep. 6, 37564 (2016)

    Article  ADS  Google Scholar 

  11. D. Kraemer, B. Poudel, H.P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, G. Chen, High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532–538 (2011)

    Article  ADS  Google Scholar 

  12. D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L.A. Weinstein, J. Loomis, Z. Ren, G. Chen, Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat. Energy 1, 16153 (2016)

    Article  ADS  Google Scholar 

  13. C. Morales, E. Flores, J.R. Ares, C. Sánchez, I.J. Ferrer, Improving the efficiency of thin film thermoelectric generators under constant heat flux by using substrates of low thermal conductivity. Phys. Status Solidi-R 12, 1800277 (2018)

    Article  Google Scholar 

  14. J. He, T.M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward. Science 357, eaak9997 (2017)

    Article  Google Scholar 

  15. J.-F. Li, W.-S. Liu, L.-D. Zhao, M. Zhou, High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2, 152–158 (2010)

    Article  Google Scholar 

  16. R. Mohanraman, T.-W. Lan, T.-C. Hsiung, D. Amada, P.-C. Lee, M.-N. Ou, Y.-Y. Chen, Engineering nanostructural routes for enhancing thermoelectric performance: bulk to nanoscale. Front. Chem. 3, 63 (2015)

    Article  Google Scholar 

  17. G. Tan, L.-D. Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016)

    Article  Google Scholar 

  18. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energ Environ. Sci. 2, 466–479 (2009)

    Article  Google Scholar 

  19. Q. **, S. Jiang, Y. Zhao, D. Wang, J. Qiu, D.-M. Tang, J. Tan, D.-M. Sun, P.-X. Hou, X.-Q. Chen, K. Tai, N. Gao, C. Liu, H.-M. Cheng, X. Jiang, Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater. 18, 62–68 (2019)

    Article  ADS  Google Scholar 

  20. M. Tan, Y. Deng, Y. Hao, Enhanced thermoelectric properties and layered structure of Sb2Te3 films induced by special (00l) crystal plane. Chem. Phys. Lett. 584, 159–164 (2013)

    Article  ADS  Google Scholar 

  21. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)

    Article  ADS  Google Scholar 

  22. A.A. Candadai, V.P. Kumar, H.C. Barshilia, Performance evaluation of a natural convective-cooled concentration solar thermoelectric generator coupled with a spectrally selective high temperature absorber coating. Sol. Energy Mater. Sol. Cells 145, 333–341 (2016)

    Article  Google Scholar 

  23. G. Chen, Theoretical efficiency of solar thermoelectric energy generators. J. Appl. Phys. 109, 104908 (2011)

    Article  ADS  Google Scholar 

  24. P. Sundarraj, D. Maity, S.S. Roy, R.A. Taylor, Recent advances in thermoelectric materials and solar thermoelectric generators—a critical review. RSC Adv. 4, 46860–46874 (2014)

    Article  ADS  Google Scholar 

  25. D. **a, C. Liu, S. Fan, A solar thermoelectric conversion material based on Bi2Te3 and carbon nanotube composites. J. Phys. Chem. C 118, 20826–20831 (2014)

    Article  Google Scholar 

  26. P. Bermel, J. Lee, J.D. Joannopoulos, I. Celanovic, M. Soljaˇcie, Selective solar absorbers, in Annual Review of Heat Transfer. ed. by J. Karni, G. Chen, V. Prasad, Y. Jaluria (Begell House Inc, New York, 2012), pp. 231–254

    Google Scholar 

  27. E.-T. Hu, K.-Y. Zang, J.-R. Zhang, A.-Q. Jiang, H.-B. Zhao, Y.-X. Zheng, S.-Y. Wang, W. Wei, O. Yoshie, Y.-P. Lee, J.-P. Guo, D.W. Lynch, L.-Y. Chen, Optical properties of solar absorber materials and structures, in Topics in Applied Physics. ed. by L.-Y. Chen (Springer Singapore, Singapore, 2021), pp. 1–165

    Google Scholar 

  28. K.Y. Sudharshan, V.P. Kumar, H.C. Barshilia, Performance evaluation of a thermally concentrated solar thermo-electric generator without optical concentration. Sol. Energy Mater. Sol. Cells 157, 93–100 (2016)

    Article  Google Scholar 

  29. Y. Wu, E.-T. Hu, Q.-Y. Cai, J. Wang, Z.-Y. Wang, H.-T. Tu, K.-H. Yu, L.-Y. Chen, W. Wei, Enhanced thermal stability of the metal/dielectric multilayer solar selective absorber by an atomic-layer-deposited Al2O3 barrier layer. Appl. Surf. Sci. 541, 148678 (2021)

    Article  Google Scholar 

  30. E.T. Hu, S. Guo, T. Gu, K.Y. Zang, H.T. Tu, Q.Y. Cai, K.H. Yu, W. Wei, Y.X. Zheng, S.Y. Wang, R.J. Zhang, Y.P. Lee, L.Y. Chen, High efficient and wide-angle solar absorption with a multilayered metal-dielectric film structure. Vacuum 146, 194–199 (2017)

    Article  ADS  Google Scholar 

  31. E.-T. Hu, X.-X. Liu, Y. Yao, K.-Y. Zang, Z.-J. Tu, A.-Q. Jiang, K.-H. Yu, J.-J. Zheng, W. Wei, Y.-X. Zheng, R.-J. Zhang, S.-Y. Wang, H.-B. Zhao, O. Yoshie, Y.-P. Lee, C.-Z. Wang, D.W. Lynch, J.-P. Guo, L.-Y. Chen, Multilayered metal-dielectric film structure for highly efficient solar selective absorption. Mater. Res. Express 5, 066428 (2018)

    Article  ADS  Google Scholar 

  32. Z.-Y. Wang, E.-T. Hu, Q.-Y. Cai, J. Wang, H.-T. Tu, K.-H. Yu, L.-Y. Chen, W. Wei, Accurate design of solar selective absorber based on measured optical constants of nano-thin Cr Film. Coatings 10, 938 (2020)

    Article  Google Scholar 

  33. A. Grosjean, A. Soum-Glaude, L. Thomas, Influence of operating conditions on the optical optimization of solar selective absorber coatings. Sol. Energy Mater. Sol. Cells 230, 111280 (2021)

    Article  Google Scholar 

  34. M.H. Liu, E.T. Hu, Y. Yao, K.Y. Zang, N. He, J. Li, Y.X. Zheng, S.Y. Wang, O. Yoshie, Y. Lee, C.Z. Wang, D.W. Lynch, L.Y. Chen, High efficiency of photon-to-heat conversion with a 6-layered metal/dielectric film structure in the 250–1200 nm wavelength region. Opt. Express 22, A1843–A1852 (2014)

    Article  Google Scholar 

  35. W.X. Zhou, Y. Shen, E.T. Hu, Y. Zhao, M.Y. Sheng, Y.X. Zheng, S.Y. Wang, Y.P. Lee, C.Z. Wang, D.W. Lynch, L.Y. Chen, Nano-Cr-film-based solar selective absorber with high photo-thermal conversion efficiency and good thermal stability. Opt. Express 20, 28953–28962 (2012)

    Article  ADS  Google Scholar 

  36. K. Zhang, L. Hao, M. Du, J. Mi, J.N. Wang, J.P. Meng, A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings. Renew. Sust. Energ. Rev. 67, 1282–1299 (2017)

    Article  Google Scholar 

  37. H.A. Macleod, Thin-Film Optical Filters, 4th edn. (CRC Press, 2010)

    Book  Google Scholar 

  38. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998)

    Google Scholar 

  39. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, W. Ted Masselink, Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 51, 6789–6798 (2012)

    Article  ADS  Google Scholar 

  40. X. Gao, Z. Guo, Q. Geng, P. Ma, G. Liu, Structure, optical properties and thermal stability of TiC-based tandem spectrally selective solar absorber coating. Sol. Energy Mater. Sol. Cells 157, 543–549 (2016)

    Article  ADS  Google Scholar 

  41. E.T. Hu, R.J. Zhang, Q.Y. Cai, Z.Y. Wang, J.P. Xu, Y.X. Zheng, S.Y. Wang, Y.F. Wei, R.Z. Huang, L.Y. Chen, Study of the thickness effect on the dielectric functions by utilizing a wedge-shaped Ti film sample with continuously varied thickness. Appl. Phys. A 120, 875 (2015)

    Article  ADS  Google Scholar 

  42. A.J. Chipperfield, P.J. Fleming, The MATLAB genetic algorithm toolbox, in: IEE Colloquium on Applied Control Techniques Using MATLAB, 1995, pp. 10/11–10/14.

  43. W.-W. Zhang, H. Qi, Z.-Q. Yu, M.-J. He, Y.-T. Ren, Y. Li, Optimization configuration of selective solar absorber using multi-island genetic algorithm. Sol. Energy 224, 947–955 (2021)

    Article  ADS  Google Scholar 

  44. K.-Y. Zang, E.-T. Hu, Z.-Y. Wang, H.-T. Tu, Y.-X. Zheng, S.-Y. Wang, H.-B. Zhao, Y.-M. Yang, Y.-P. Lee, L.-Y. Chen, Effect of deposition power on the thermoelectric performance of bismuth telluride prepared by RF sputtering. Crystals 10, 552 (2020)

    Article  Google Scholar 

  45. N.-W. Park, T.-H. Park, J.-Y. Ahn, S.-H. Kang, W.-Y. Lee, Y.-G. Yoon, S.-G. Yoon, S.-K. Lee, Thermoelectric characterization and fabrication of nanostructured p-type Bi0.5Sb1.5Te3 and n-type Bi2Te3 thin film thermoelectric energy generator with an in-plane planar structure. AIP Adv. 6, 065123 (2016)

    Article  ADS  Google Scholar 

  46. H. Shang, C. Dun, Y. Deng, T. Li, Z. Gao, L. **ao, H. Gu, D.J. Singh, Z. Ren, F. Ding, Bi0.5Sb1.5Te3-based films for flexible thermoelectric devices. J. Mater. Chem. A 8, 4552–4561 (2020)

    Article  Google Scholar 

  47. M. Tan, Y. Deng, Y. Hao, Enhancement of thermoelectric properties induced by oriented nanolayer in Bi2Te2.7Se0.3 columnar films. Mater. Chem. Phys. 146, 153–158 (2014)

    Article  Google Scholar 

  48. H.-J. Shang, F.-Z. Ding, Y. Deng, H. Zhang, Z.-B. Dong, W.-J. Xu, D.-X. Huang, H.-W. Gu, Z.-G. Chen, Highly (00l)-oriented Bi2Te3/Te heterostructure thin films with enhanced power factor. Nanoscale 10, 20189–20195 (2018)

    Article  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (61605089, and 61805267), Youth Innovation Promotion Association of the Chinese Academy of Sciences (2019241), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB140006), and Natural Science Foundation of Nan**g University of Posts and Telecommunications (NY221068).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Er-Tao Hu or Ke-Han Yu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, ZY., Hu, ET. et al. Enhanced electrical outputs of thin-film solar thermoelectric generator with optimized metal/dielectric multilayered solar selective absorber. Appl. Phys. A 128, 572 (2022). https://doi.org/10.1007/s00339-022-05713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05713-8

Keywords

Navigation