Log in

Simplified detection method of the rear-side weak soldering for monofacial solar cell using electroluminescence quantitative technology

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the series soldering step of photovoltaic module manufacturing process, soldering could be occasionally found weak or missing between busbar and interconnection ribbon. The affected modules have local heating phenomenon in application, which aggravates modules efficiency degradation. Electroluminescence (EL) technology can detect many module defect types including weak soldering. But the grayscale change of EL image is not obvious enough caused by rear-side weak soldering (RWS) compared with front-side weak soldering, especially for monofacial solar cell. RWS is difficult for manual qualitative identification. In this paper, we use EL quantitative technology and simply define deviation percentage (Si) to distinguish types of weak soldering. RWS can be effectively detected through grayscale analysis of EL images under two different bias current conditions, which is verified by experiments and simulation. Further simulation results suggest that higher rear-side lateral resistance leads to lower Si of RWS. This method is instructive for the automatic EL detection in module production line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. García, L. Marroyo, E. Lorenzo, J. Marcos, M. Pérez, Observed degradation in photovoltaic plants affected by hot-spots. Prog. Photovoltaics Res. Appl. 22, 1292–1301 (2014). https://doi.org/10.1002/pip.2393

    Article  Google Scholar 

  2. A. Anwar, Micro-crack detection of multicrystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique.pdf. EURASIP J. Image Videc Process. (2014). https://doi.org/10.1186/1687-5281-2014-15

    Article  Google Scholar 

  3. T. Fuyuki, H. Kondo, Y. Kaji, A. Ogane, Y. Takahashi, Analytic findings in the electroluminescence characterization of crystalline silicon solar cells. J. Appl. Phys. 101(2), 023711 (2007). https://doi.org/10.1063/1.2431075

    Article  ADS  Google Scholar 

  4. T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, Y. Uraoka, Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Appl. Phys. Lett. 10(1063/1), 1978979 (2005)

    Google Scholar 

  5. P. Würfel, T. Trupke, T. Puzzer, E. Schäffer, W. Warta, S.W. Glunz, Diffusion lengths of silicon solar cells from luminescence images. J. Appl. Phys. 10(1063/1), 2749201 (2007)

    Google Scholar 

  6. M. Glatthaar, J. Giesecke, M. Kasemann, J. Haunschild, M. The, W. Warta, S. Rein, Spatially resolved determination of the dark saturation current of silicon solar cells from electroluminescence images. J. Appl. Phys. 10(1063/1), 3132827 (2009)

    Google Scholar 

  7. T. Mochizuki, C. Kim, M. Yoshita, J. Mitchell, Z. Lin, S. Chen, H. Takato, Y. Kanemitsu, H. Akiyama, Solar-cell radiance standard for absolute electroluminescence measurements and open-circuit voltage map** of silicon solar modules. J. Appl. Phys. 10(1063/1), 4940159 (2016)

    Google Scholar 

  8. V. Gazuz, C. Buerhop, Detection of power losses in busbar solder contacts by electroluminescence imaging of solar cells. Meas. Sci. Technol. (2011). https://doi.org/10.1088/0957-0233/22/11/115702

    Article  Google Scholar 

  9. J. Walter, D. Eberlein, J. Haunschild, M. Tranitz, U. Eitner (2012) A method to detect defective solder joints by RS-electroluminescence imaging. Paper presented at the energy procedia

  10. A.S. Rajput, C.D. Rodríguez-Gallegos, J.W. Ho, S. Nalluri, S. Raj, A.G. Aberle, J.P. Singh, Fast extraction of front ribbon resistance of silicon photovoltaic modules using electroluminescence imaging. Sol. Energy 194, 688–695 (2019). https://doi.org/10.1016/j.solener.2019.11.013

    Article  ADS  Google Scholar 

  11. U. Rau, Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B (2007). https://doi.org/10.1103/PhysRevB.76.085303

    Article  Google Scholar 

  12. J. Haunschild, M. Glatthaar, M. Kasemann, S. Rein, E.R. Weber, Fast series resistance imaging for silicon solar cells using electroluminescence. Phys. Status Solidi Rapid Res. Lett. 3(7–8), 227–229 (2009)

    Article  ADS  Google Scholar 

  13. M. Glatthaar, J. Haunschild, R. Zeidler, M. Demant, J. Greulich, B. Michl, W. Warta, S. Rein, R. Preu, Evaluating luminescence based voltage images of silicon solar cells. J. Appl. Phys. 10(1063/1), 3443438 (2010)

    Google Scholar 

  14. K.G. Bedrich, W. Luo, M. Pravettoni, D. Chen, Y. Chen, Z. Wang, P.J. Verlinden, P. Hacke, Z. Feng, J. Chai, Y. Wang, A.G. Aberle, Y.S. Khoo, Quantitative electroluminescence imaging analysis for performance estimation of PID-influenced PV modules. IEEE J. Photovolt. 8(5), 1281–1288 (2018). https://doi.org/10.1109/jphotov.2018.2846665

    Article  Google Scholar 

  15. S. Guo, J.P. Singh, M. Peters, A.G. Aberle, J. Wong, Two-dimensional current flow in stringed PV cells and its influence on the cell-to-module resistive losses. Sol. Energy 130, 224–231 (2016). https://doi.org/10.1016/j.solener.2016.02.012

    Article  ADS  Google Scholar 

Download references

Funding

The work is financially supported by the National Key R&D Program of China (2018YFB1500903); and Shanghai Science and Technology Committee Project (20dz1206309).

Author information

Authors and Affiliations

Authors

Contributions

Minglei Lu performed the experiment and drafted the manuscript. Guoqiang Hao and Cui Liu provided assistance for data analysis. **aojun Ye, Cihua Peng and Hongbo Li conceived of the study and reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guoqiang Hao or Hongbo Li.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Hao, G., Ye, X. et al. Simplified detection method of the rear-side weak soldering for monofacial solar cell using electroluminescence quantitative technology. Appl. Phys. A 127, 378 (2021). https://doi.org/10.1007/s00339-021-04510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04510-z

Keywords

Navigation