Log in

Physical investigations on LaMn1−xNixO3 perovskite sprayed thin films along with surface magnetic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper deals with the results on the structural, electrical, vibrational and optical properties of LaMn1−xNixO3 (0 ≤ x ≤ 0.3) thin films prepared by the spray pyrolysis technique on glass substrates at 460 °C using (LaCl3·7H2O), (MnCl2·4H2O) and (NiCl2·6H2O) as precursors. First, XRD analysis shows an orthorhombic structure of all prepared thin films. Second, room temperature Raman spectra showed broad and intense bands characteristic of LaMnO3 parent compound modes. An important shift to higher frequencies was observed and attributed to disorder induced by Ni composition and Frenkel defects associated to the formation of vacancy and interstitial oxygen sites. The optical measurements show that the optical band gap energy value varies sparsely in terms of Ni content. On the other hand, the electric conductivity measurements were investigated using the impedance spectroscopy technique in the frequency range 5 Hz–10 MHz at various temperatures (410–500 °C). AC conductivity of LaMn1−xNixO3 thin films is found to follow the Jonsher law. The temperature dependence of the AC conductivity is consistent with the correlated barrier-hop** model with activation energy Ea varying in (0.70–1.29) eV domain. Finally, the magnetic hysteresis loops of such films exhibit obvious ferromagnetic behavior with a high dependency with Ni content particularly the coercivity value (Hc) increases with Ni concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D. Kuščer, M. Hrovat, J. Holc, S. Bernik, D. Kolar, J. Power Sources 71, 195–198 (1998)

    Article  ADS  Google Scholar 

  2. M.K. Gubkin, T.A. Khimich, E.V. Kleparskaya, T.M. Perekalina, A.V. Zalessky, J. Magn. Magn. Mater. 154, 351–354 (1996)

    Article  ADS  Google Scholar 

  3. G.H. Jonker, J.H. Van Santen, Physica 16, 337–349 (1950)

    Article  ADS  Google Scholar 

  4. M. Popa, L.V. Hong, M. Kakihana, Phys. B Condens. Matter 327, 237–240 (2003)

    Article  ADS  Google Scholar 

  5. W. Wenwei, C. **chao, W. Xuehang, L. Sen, W. Kaituo, T. Lin, Adv. Powder Technol. 24, 154–159 (2013)

    Article  Google Scholar 

  6. J.H. Zhao, T. Song, H.P. Kunkel, X.Z. Zhou, R.M. Roshko, G. Williams, J. Phys. Condens. Matter 12, 6903 (2000)

    Article  ADS  Google Scholar 

  7. J. Rodríguez-Carvajal, M. Hennion, F. Moussa, A.H. Moudden, L. Pinsard, A. Revcolevschi, Phys. Rev. B 57, 3189 (1998)

    Article  ADS  Google Scholar 

  8. Y. Zhong-Qin, S. Qiang, Y. Ling, X. **-De, Acta. Phys. Sin. Ov. Ed. 7, 851 (1998)

    ADS  Google Scholar 

  9. A. Mahmood, M.F. Warsi, M.N. Ashiq, M. Sher, Mater. Res. Bull. 47, 4197–4202 (2012)

    Article  Google Scholar 

  10. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496–499 (2000)

    Article  ADS  Google Scholar 

  11. R. Mahendiran, S.K. Tiwary, A.K. Raychaudhuri, T.V. Ramakrishanan, R. Mahesh, N. Rangavittal, C.N.R. Rao, Phys. Rev. B 53, 3348–3358 (1996)

    Article  ADS  Google Scholar 

  12. S. **, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264, 413 (1994)

    Article  ADS  Google Scholar 

  13. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13–20 (2007)

    ADS  Google Scholar 

  14. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

    Article  ADS  Google Scholar 

  15. R. Mahendiran, S.K. Tiwary, A.K. Raychaudhuri, T.V. Ramakrishnan, R. Mahesh, N. Rangavittal, Phys. Rev. B 53, 3348 (1996)

    Article  ADS  Google Scholar 

  16. G. Kremenić, J.M.L. Nieto, J.M.D. Tascón, L.G. Tejuca, J. Chem. Soc. Faraday Trans. 81, 939–949 (1985)

    Article  Google Scholar 

  17. M. Shaterian, M. Enhessari, D. Rabbani, M. Asghari, M. Salavati-Niasari, Appl. Surf. Sci. 318, 213–217 (2014)

    Article  ADS  Google Scholar 

  18. F. Nourbakhsh, M. Pazouki, M. Mohsennia, J. Fuel Chem. Technol. 45, 871–879 (2017)

    Article  Google Scholar 

  19. M. Shen, Z. Zhao, J. Chen, Y. Su, J. Wang, X. Wang, J. Rare Earths 31, 119–123 (2013)

    Article  Google Scholar 

  20. H. Luo, J. Guo, T. Shen, H. Zhou, J. Liang, S. Yuan, J. Taiwan Inst. Chem. Eng. 109, 15–25 (2020)

    Article  Google Scholar 

  21. José Manuel Vila-Fungueiriño, Beatriz Rivas-Murias, Francisco Rivadulla. Thin Solid Films 553, 81 (2014)

    Article  ADS  Google Scholar 

  22. M. Oshima, D. Kobayashi, K. Horiba, H. Ohguchi, H. Kumigashira, K. Ono, N. Nakagawa, M. Lippmaa, M. Kawasaki, H. Koinuma, J. Electron Spectrosc. Relat. Phenom. 137–140, 145 (2004)

    Article  Google Scholar 

  23. R.K. Zhenga, Y. Wang, H.-U. Habermeier, H.L.W. Chan, X.M. Li, H.S. Luo, J. Alloy. Compd. 519, 77 (2012)

    Article  Google Scholar 

  24. Z. Marton, S.S.A. Seo, T. Egami, H.N. Lee, J. Cryst. Growth 312, 2923 (2010)

    Article  ADS  Google Scholar 

  25. H.S. Kim, S.S. Oh, H.S. Ha, R.K. Ko, D.W. Ha, T.H. Kim, D.J. Youm, N.J. Lee, S.H. Moon, S.I. Yoo, C. Park, Phys. C 469, 1554 (2009)

    Article  ADS  Google Scholar 

  26. R. Dhama, C. Nayek, Ch Thirmal, P. Murugavel, J. Magn. Magn. Mater. 364, 125 (2014)

    Article  ADS  Google Scholar 

  27. H. Okuyucu, H. Cinici, T. Konak, Ceram. Int. 39, 903–2184 (2013)

    Article  Google Scholar 

  28. G.L. Bertrand, G. Caboche, L.-C. Dufour, Solid State Ion. 129, 219 (2000)

    Article  Google Scholar 

  29. R. Todorovska, N. Petrova, D. Todorovsky, St Groudeva-Zotova, Appl. Surf. Sci. 252, 3441 (2006)

    Article  ADS  Google Scholar 

  30. A. Boukhachem, A. Ziouche, M. Ben Amor, O. Kamoun, M. Zergoug, H. Maghraoui-Meherzi, A. Yumak, K. Boubaker, M. Amlouk, Mater. Res. Bull. 74, 202–211 (2016)

    Article  Google Scholar 

  31. J. Rodriguez-Carvajal, M. Hennion, F. Moussa, A.H. Moudden, L. Pinsard, A. Revcolevschi, Phys. Rev. Condens. Matter 57, 3189–3192 (1998)

    Article  ADS  Google Scholar 

  32. V.A. Cherepanov, E.A. Filonova, V.I. Voronin, I.F. Berger, J. Solid State Chem. 153, 205–211 (2000)

    Article  ADS  Google Scholar 

  33. T. Mori, K. Inoue, N. Kamegashira, J. Alloys Compd. 308, 87–93 (2000)

    Article  Google Scholar 

  34. S.J. Hibble, S.P. Cooper, A.C. Hannon, I.D. Fawcett, M. Greenblatt, J. Phys. Condens. Matter 11, 9221–9238 (1999)

    Article  ADS  Google Scholar 

  35. R.D. Shannon, Acta Crystallogr. Sect. A Crystal Phys. Diffr. Theor. Gen. Crystallogr. 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  36. A. Boukhachem, C. Bouzidi, R. Boughalmi, R. Ouerteni, M. Kahlaoui, B. Ouni, H. Elhouichet, M. Amlouk, Ceram. Int. 40, 13427 (2014)

    Article  Google Scholar 

  37. A. Boukhachem, O. Kamoun, C. Mrabet, C. Mannai, N. Zouaghi, A. Yumak, K. Boubaker, M. Amlouk, Mater. Res. Bull. 72, 252 (2015)

    Article  Google Scholar 

  38. H.M. Martínez, J. Torres, L.D. López Carreño, M.E.R. García, Mater. Charact. 75, 184 (2013)

    Article  Google Scholar 

  39. A. Boukhachem, M. Mokhtari, N. Benameur, A. Ziouche, M. Martínez, P. Petkova, M. Ghamnia, A. Cobo, M. Zergoug, M. Amlouk, Sens. Actuators A 253, 198 (2017)

    Article  Google Scholar 

  40. O. Kamoun, A. Boukhachem, M. Amlouk, S. Ammar, J. Alloy. Compd. 687, 595–603 (2016)

    Article  Google Scholar 

  41. A. Loukil, A. Boukhachem, M. Ben Amor, M. Ghamnia, K. Raouadi, Ceram. Int. 42, 8274–8289 (2016)

    Article  Google Scholar 

  42. C. Mrabet, O. Kamoun, A. Boukhachem, M. Amlouk, T. Manoubi, J. Alloy. Compd. 648, 826 (2015)

    Article  Google Scholar 

  43. V.M. Goldschmidt, Die gesetze der krystallochemie Naturwissenschaften 14, 477–485 (1926)

    Article  ADS  Google Scholar 

  44. J.K. Nam, D.H. Chun, R.J.K. Rhee, J.H. Lee, J.H. Park, Methodologies toward efficient and stable cesium lead halide perovskite-based solar cells. Adv. Sci. 5, 1800509 (2018)

    Article  Google Scholar 

  45. C. Chen, Y. Xu, S. Wu, S. Zhang, Z. Yang, W. Zhang, H. Zhu, Z. **ong, W. Chen, W. Chen, CaI2: a more effective passivator of perovskite films than PbI2 for high efficiency and long-term stability of perovskite solar cells. J. Mater. Chem. A 6, 7903–7912 (2018)

    Article  Google Scholar 

  46. D. Pérez-del-Rey, D. Forgács, E.M. Hutter, T.J. Savenije, D. Nordlund, P. Schulz, J.J. Berry, M. Sessolo, H.J. Bolink, Strontium insertion in methylammonium lead iodide: long charge carrier lifetime and high fill-factor solar cells. Adv. Mater. 28, 9839–9845 (2016)

    Article  Google Scholar 

  47. S.-H. Chan, M.-C. Wu, K.-M. Lee, W.-C. Chen, T.-H. Lin, W.-F. Su, Enhancing perovskite solar cell performance and stability by do** barium in methylammonium lead halide. J. Mater. Chem. A 5, 18044–18052 (2017)

    Article  Google Scholar 

  48. J. Liang, Z. Liu, L. Qiu, Z. Hawash, L. Meng, Z. Wu, Y. Jiang, L.K. Ono, Y. Qi, Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv. Energy Mater. 8, 1800504 (2018)

    Article  Google Scholar 

  49. C.F.J. Lau, X. Deng, J. Zheng, J. Kim, Z. Zhang, M. Zhang, J. Bing, B. Wilkinson, L. Hu, R. Patterson, S. Huang, A. Ho-Baillie, Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. J. Mater. Chem. A 6, 5580–5586 (2018)

    Article  Google Scholar 

  50. M. Oueslati, A. Tlili, M. Balkanski, P.K. Moon, H.L. Tuller. Proc. Of the Int’l. Conf. on Cond. Matter Phys. and Appl., Bahrain (1992).

  51. A. Meftah, M. Oueslati, C. Benoit à la Guillaume, J. Phys. Condens. Matter 6, 10377–10390 (1994)

    Article  ADS  Google Scholar 

  52. M.V. Abrashev, A.P. Litvinchuk, M.N. Iliev, R.L. Meng, V.N. Popov, V.G. Ivanov, R.A. Chakalov, C. Thomsen, Phys. Rev. B 59, 4146 (1999)

    Article  ADS  Google Scholar 

  53. M.N. Iliev, M.V. Abrashev, J. Raman Spectrosc. 32, 805 (2001)

    Article  ADS  Google Scholar 

  54. C. Aruta, A.M. Angeloni, G. Balestrino, N.G. Boggio, P.G. Medaglia, A. Tebano, J. Appl. Phys. 100, 023910 (2006)

    Article  ADS  Google Scholar 

  55. J. Zuo, C. Xu, Y. Liu, Y. Qian, Nanostruct. Mater. 10, 1331–1335 (1998)

    Article  Google Scholar 

  56. T. Larbi, M.H. Lakhdar, A. Amara, B. Ouni, A. Boukhachem, A. Mater, M. Amlouk, J. Alloy. Compd. 626, 93–101 (2015)

    Article  Google Scholar 

  57. L. Ben Said, A. Inoubli, B. Bouricha, M. Amlouk, Mol. Biomol. Spectrosc. 171, 487–498 (2017)

    Article  Google Scholar 

  58. C. Mrabet, M. BenAmor, A. Boukhachem, M. Amlouk, T. Manoubi, Ceram. Int. 42, 5963–5978 (2016)

    Article  Google Scholar 

  59. N.V. Minh, S.J. Kim, I.S. Yang, Phys. B 327, 208–210 (2003)

    Article  ADS  Google Scholar 

  60. S. Belgacem, R. Bennaceur, Rev. Phys. Appl. 25, 1245 (1990)

    Article  Google Scholar 

  61. N. Hamzaoui, A. Boukhachem, M. Ghamnia, C. Fauquet, Results Phys. 7, 1950–1958 (2017)

    Article  ADS  Google Scholar 

  62. M.A. Chakhoum, A. Boukhachem, M. Ghamnia, N. Benameur, N. Mahdhi, K. Raouadi, M. Amlouk, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 205, 649–660 (2018)

    Article  ADS  Google Scholar 

  63. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

  64. W. Martienssen, J. Phys. Chem. Solids 2, 257 (1957)

    Article  ADS  Google Scholar 

  65. A. Canul, D. Thapa, J. Huso, L. Bergman, R.V. Williams, R. Machleidt, Mixed-strategy approach to band-edge analysis and modeling in semiconductors. Phys. Rev. B 101, 195308 (2020)

    Article  ADS  Google Scholar 

  66. H. Arifa, A. Boukhachem, B. Askri, K. Boubaker, A. Yumak, K. Raouadi, Ceram. Int. 42, 2147 (2016)

    Article  Google Scholar 

  67. B. Ouni, M.H. Lakhdar, R. Boughalmi, T. Larbi, A. Boukhachem, A. Madani, K. Boubaker, M. Amlouk, J. Non Cryst. Solids 1, 367 (2013)

    Google Scholar 

  68. A. Ramirez-Duverger, A. Rabdel Ruiz-Salvador, M.P. Hernandez-Sanchez, M.F. Garcia-Sanchezd, G. Rodriguez-Gattornod, Solid State Ion. 96, 89 (1997)

    Article  Google Scholar 

  69. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  70. A. Boukhachem, A. Yumak, S. Krichen, A. Madani, M. Abderrabba, P. Petkova, K. Boubaker, M. Amlouk, H. Bouchriha, Sens. Actuators A 227, 11 (2015)

    Article  Google Scholar 

  71. M.A. Afifi, A.E. Bekheet, E. Abd Elwahhab, H.E. Atyia, Vacuum 61, 9 (2001)

    Article  ADS  Google Scholar 

  72. Q. Sun, X. Luo, Q. **a, Y. Guo, J. Su, Q. Li, G. Miao, J. Magn. Magn. Mater. 4991, 166317 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amlouk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharbi, B., Boukhachem, A., Amlouk, M. et al. Physical investigations on LaMn1−xNixO3 perovskite sprayed thin films along with surface magnetic applications. Appl. Phys. A 126, 604 (2020). https://doi.org/10.1007/s00339-020-03794-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03794-x

Keywords

Navigation