Log in

Effects of Zn2+ substitution on the sintering behaviour and dielectric properties of Li2Mg1−xZnxSiO4 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silicates, the basis on which low-temperature-fired dielectric materials widely studied for applications in the fields of microwave integrated circuits, have been develo** vigorously owing to their low dielectric constants and tangent loss values. In this work, Zn2+ was gradually substituted to Mg2+ to make the sintering temperature decreased and enhance the microwave dielectric properties of Li2MgSiO4. Li2Mg1−xZnxSiO4 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) powders were prepared through solid-state reaction. Aiming to decrease the sintering temperature to approximately 900 °C, 3 wt% Li2O–B2O3–SiO2–CaO–Al2O3 glass was used as a sintering aid. The XRD patterns made it clear that the major crystalline phase of the materials was Li2(Mg,Zn)SiO4. A new unexpected crystalline phase of ZnxSiO4 appeared when the amount of Zn2+ substituted increased to more than 0.4. SEM micrographs demonstrated that when x = 0.4, the most homogeneous microstructure appeared. Meanwhile, the Q × f value and the relative density also reached to their peaks when x = 0.4, respectively. Moreover, 3 wt% LBSCA-doped Li2Mg0.6Zn0.4SiO4 ceramics exhibited excellent dielectric properties of εr = 5.89, Q × f = 44,787 GHz and τf = − 71.65 ppm/°C when sintered at 900 °C. The material exhibited low relative permittivity and low dielectric loss and could thus be a potential candidate for LTCC device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.D.L. Chung, Materials for electronic packaging (Butterworth Heinemann, Boston, 1995), pp. 19–27

    Google Scholar 

  2. M.M. Krzmanc, M. Valant, D. Suvorov, A structural and dielectric characterization of NaxCa1−xAl2−xSi2+xO8 (x = 0 and 1) ceramics. J. Eur. Ceram. Soc. 25, 2835–2838 (2005)

    Article  Google Scholar 

  3. R.R. Thummala, Ceramic and Glass-Ceramic Packaging in the 1990s. J. Am. Ceram. Soc. 74, 895–908 (1991)

    Article  Google Scholar 

  4. Hua-Wen Chen, Su Hua, Huai-Wu Zhang, Ting-Chuan Zhou, Bo-Wen Zhang, Jian-Feng Zhang, **ao-li Tang, Low-temperature sintering and microwave dielectric properties of (Zn1−xCox)2SiO4 ceramics. Ceram. Int. 40, 14655–14659 (2014)

    Article  Google Scholar 

  5. Du Kang, **ao-Qiang Song, Jie Li, Wu Jia-Min, Lu Wen-Zhong, **ao-Chuan Wang, Wen Lei, Optimised phase compositions and improved microwave dielectric properties based on calcium tin silicates. J. Euro. Ceram. Soc. 39, 340–345 (2019)

    Article  Google Scholar 

  6. Yuanming Lai, Su Hua, Gang Wang, **aoli Tang, **n Huang, **aofeng Liang, Huaiwu Zhang, Yuanxun Li, Ke Huang, **ao Renshaw Wang, Low temperature sintering of microwave ceramics with high Qf values through LiF addition. J. Am. Ceram. Soc. 102, 1893–1903 (2019)

    Google Scholar 

  7. P.V. Bijumon, M.T. Sebastian, A. Dias, R.L. Moreira, P. Mohanan, Low-loss Ca5−xSrxA2TiO12[A = Nb, Ta] ceramics: microwave dielectric properties and vibrational spectroscopic analysis. J. Appl. Phys. 97, 104108 (2005)

    Article  ADS  Google Scholar 

  8. **ao-Qiang Song, Du Kang, Jie Li, Xue-Kai Lan, Lu Wen-Zhong, **ao-Hong Wang, Wen Lei, Low-fired fluoride microwave dielectric ceramics with low dielectric loss. Ceram. Int. 45, 279–286 (2019)

    Article  Google Scholar 

  9. W. Huanga, K.S. Liua, L.W. Chub, G.H. Hsiueb, I.N. Linc, Microwave dielectric properties of LTCC materials consisting of glass–Ba2Ti9O20 composites. J. Eur. Ceram. Soc. 23, 2559–2563 (2003)

    Article  Google Scholar 

  10. N.I. Santha, M.T. Sebastian, Microwave dielectric properties of A6B5O18-type perovskites. J. Am. Ceram. Soc. 90, 496–501 (2007)

    Article  Google Scholar 

  11. T. Kolodiazhnyi, BaMg1/3Nb2/3O3–Mg4Nb2O9 composite microwave ceramics with high Q-factor and low sintering temperature. J. Eur. Ceram. Soc. 32, 4305–4309 (2012)

    Article  Google Scholar 

  12. X.Y. Chen, W.J. Zhang, S.X. Bai, Y.G. Du, Densification and characterization of SiO2–B2O3–CaO–MgO glass/Al2O3 composites for LTCC application. Ceram. Int. 39, 6355–6361 (2013)

    Article  Google Scholar 

  13. L. He, G. **a, D.A. Yang, Synthesis and characterization of LTCC composites based on the spodumene/anorthite crystallizable glass. J. Alloys Compd. 556, 12–19 (2013)

    Article  Google Scholar 

  14. Y.X. Hu, D.M. Wei, Q.Y. Fu, J. Zhao, D.X. Zhou, Preparation and microwave dielectric properties of 3ZnO·B2O3 ceramics with low sintering temperature. J. Eur. Ceram. Soc. 32, 521–524 (2012)

    Article  Google Scholar 

  15. T.S. Sasikala, M.N. Suma, P. Mohanan, C. Pavithran, M.T. Sebastian, Forsterite-based ceramic–glass composites for substrate applications in microwave and millimeter wave communications. J. Alloys Compd. 461, 555–559 (2008)

    Article  Google Scholar 

  16. Y.M. Lai, X.L. Tang, X. Huang, H.W. Zhang, Phase composition, crystal structure and microwave dielectric properties of Mg2−xCuxSiO4 ceramics. J. Eur. Ceram. Soc. 38, 1508–1516 (2018)

    Article  Google Scholar 

  17. Linus Pauling, The nature of silicon oxygen bonds. Am. Mineral. 65, 321–323 (1980)

    Google Scholar 

  18. D. Thomas, K.T. Rethika, M.T. Sebastian, Microwave dielectric properties of Ba Nb(2−x)TaxP2O11 (x = 0, 0.5, 1, 1.5 and 2) ceramics. J. Mater. Sci. Mater. Electron. 23, 1268–1271 (2012)

    Article  Google Scholar 

  19. X.Q. Song, W.Z. Lu, X.C. Wang, X.H. Wang, G.F. Fan, R. Muhammad, W. Lei, Sintering behavior and microwave dielectric properties of BaAl2−2x(ZnSi)xSi2O8 ceramics. J. Eur. Ceram. Soc. 38(4), 1529–1534 (2018)

    Article  Google Scholar 

  20. H.P. Wang, Q.L. Zhang, H. Yang, H.P. Sun, Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol–gel process. Ceram. Int. 34, 1405–1408 (2008)

    Article  Google Scholar 

  21. S.P. Wu, D.F. Chen, Y.X. Mei, Q. Ma, Synthesis and microwave dielectric properties of Ca3Sn Si2O9 ceramics. J. Alloys Compd. 521, 8–11 (2012)

    Article  Google Scholar 

  22. K.X. Song, X.M. Chen, Phase evolution and microwave dielectric characteristics of Ti-substituted Mg2SiO4 forsterite ceramics. Mater. Lett. 62, 520–522 (2008)

    Article  Google Scholar 

  23. N.H. Nguyen, J.B. Lim, S. Nahm, Effect of Zn/Si ratio on the microstructural and microwave dielectric properties of Zn2SiO4 ceramics. J. Am. Ceram. Soc. 90, 3127–3130 (2007)

    Article  Google Scholar 

  24. T. Joseph, M.T. Sebastian, Tape casting and dielectric properties of Sr2ZnSi2O7-based ceramic–glass composite for low-temperature co-fired ceramics applications. Int. J. Appl. Ceram. Technol. 8, 854–864 (2011)

    Article  Google Scholar 

  25. X.Y. Du, H. Su, H.W. Zhang, Y.L. **g, Z.H. Zhou, G.W. Gan, X.L. Tang, Effects of Li-ion substitution on the microwave dielectric properties of low temperature sintered ceramics with nominal composition Li2xMg2−xSiO4. Ceram. Int. 44, 2300–2303 (2018)

    Article  Google Scholar 

  26. X.K. Lan, Z.Y. Zou, W.Z. Lu, J.H. Zhu, W. Lei, Phase transition and low-temperature sintering of Zn(Mn1−xAlx)2O4 ceramics for LTCC applications. Ceram. Int. 42, 17731–17735 (2016)

    Article  Google Scholar 

  27. W. Lei, Y.Y. Yan, X.H. Wang, W. Lu, Z.B. Yang, W.Z. Lu, Improving the breakdown strength of (Mg0.9Zn0.1)2(Ti1−xMnx)O4 ceramics with low dielectric loss. Ceram. Int. 41, 521–525 (2015)

    Article  Google Scholar 

  28. J. Zhang, Y.Y. Zhou, Z.X. Yue, Low-temperature sintering and microwave dielectric properties of LiF-doped CaMg1−xZnxSi2O6 ceramics. Ceram. Int. 39, 2051–2058 (2013)

    Article  Google Scholar 

  29. S. George, M.T. Sebastian, S. Raman, P. Mohanan, Effect of lithium-based glass addition on the microwave dielectric properties of Ca[(Li1/3Nb2/3)1−xTix]O3−δ ceramics for LTCC applications. J. Alloy. Compd. 473, 336–340 (2009)

    Article  Google Scholar 

  30. S. George, M.T. Sebastian, Microwave dielectric properties of novel temperature stable high Q Li2Mg1−xZnxTi3O8 and Li2A1−xCaxTi3O8 (A = Mg, Zn) ceramics. J. Eur. Ceram. Soc. 30, 2585–2592 (2010)

    Article  Google Scholar 

  31. A. Rose, B. Masin, H. Sreemoolanadhan, K. Ashok, T. Vijayakumar, Synthesis and microwave dielectric studies of pure Li2MgSiO4 and B2O3, MgF2, WO3 added Li2MgSiO4 for substrate applications. J. Appl. Surf. Sci. 449, 96–104 (2018)

    Article  ADS  Google Scholar 

  32. X.D. **e, X.L. Tang, Y.L. **g, H.W. Zhang, H. Su, Y.X. Li, Influence of partial cobalt-ion substitution on the microstructure and dielectric properties of (Zn0.7Mg0.3)1−xCoxTiO3 ceramics. Ceram. Int. 44, 13165–13168 (2018)

    Article  Google Scholar 

  33. J. Pei, Z.X. Yue, F. Zhao, Z.L. Gui, L.T. Li, Microwave dielectric ceramics of hexagonal(Ba1xAx)La4Ti4O15 (A¼Sr, Ca) for base station applications. J. Alloy. Compd. 459, 390–394 (2008)

    Article  Google Scholar 

  34. M. Thirumal, I.N. Jawahar, K.P. Surendiran, P. Mohanan, A.K. Ganguli, Synthesis and microwave dielectric properties of Sr3Zn1xMgxNb2O9 phases. Mater. Res. Bull. 37, 185–191 (2002)

    Article  Google Scholar 

  35. X. Du, H. Su, H. Zhang, X. Liu, X. Tang, Phase evolution and microwave dielectric properties of ceramics with nominal composition Li2x(Zn0.95Co0.05)2−xSiO4 for LTCC applications. RSC Adv. 7, 27415–27421 (2017)

    Article  Google Scholar 

  36. D. Thomas, M.T. Sebastian, Effect of Zn2+ substitution on the microwave dielectric properties of LiMgPO4 and the development of a new temperature stable glass free LTCC. J. Eur. Ceram. Soc. 32, 2359–2364 (2012)

    Article  Google Scholar 

  37. C. Huang, S. Liu, Characterization of extremely low loss dielectrics (Mg0.95Zn0.05)TiO3 at microwave frequency. Jpn. J. Appl. Phys. 46, 283–285 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant Nos. U1809215, 51772047 and 61871069. Science and technology support program of Sichuan Province under Grant Nos. 2018GZ0320 and “111” project under Grant No. T2018001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**g, X., Tang, X., Tang, W. et al. Effects of Zn2+ substitution on the sintering behaviour and dielectric properties of Li2Mg1−xZnxSiO4 ceramics. Appl. Phys. A 125, 415 (2019). https://doi.org/10.1007/s00339-019-2712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2712-8

Navigation