Log in

Design of the high-efficiency transmission-type polarization converter based on substrate-integrated waveguide (SIW) technology

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the design of a three-layer linear polarization converter based on substrate-integrated waveguide (SIW) technology is demonstrated. The transmission-type polarization converter with dual frequency polarization conversion characteristics is realized by a square-slot sandwiched by two layers of off-center dipole-slot resonator, and its asymmetric transmission (AT) property can be obtained by rotating the upper and the lower dipole-slot resonator to form an interlaced layout. An excellent polarization conversion ratio (PCR) can be realized by integrating the traditional transmission-type polarization converter with an SIW, and its physical mechanism can be explicated by guided wave field theory. Experimental results are presented and compared with the simulation results, and they demonstrated that ultra-high PCRs of the presented polarization converter are 0.87 and 0.99 for the measurement at the working frequency of 7.34 GHz and the simulation at the working frequency of 7.6 GHz, respectively. The designed polarization converter has greatly expanded the application field of SIW technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.I. Landy, S. Sajuyigbe, J.J. Mock et al., Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)

    ADS  Google Scholar 

  2. N. Fernez, L. Burgnies, J. Hao et al., Radiative quality factor in thin resonant metamaterial absorbers. IEEE Trans. Microw. Theory Tech. 66(4), 1764–1772 (2018)

    ADS  Google Scholar 

  3. D. Schurig, J.J. Mock, B.J. Justice et al., Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006)

    ADS  Google Scholar 

  4. S.S. Islam, M.M. Hasan, M.R.I. Faruque, A new metamaterial-based wideband rectangular invisibility cloak. Appl. Phys. A 124(2), 160 (2018)

    ADS  Google Scholar 

  5. J. Chen, H. Yang, G. Zhang et al., Integrating an ultra-broadband power splitter and a polarization conerter using a zigzag metamaterial. Opt. Mater. Express 8(6), 1454–1462 (2018)

    ADS  Google Scholar 

  6. X. Gao, L. Singh, W. Yang et al., Bandwidth broadening of a linear polarization converter by near-field metasurface coupling. Sci Rep 7(1), 6817 (2017)

    ADS  Google Scholar 

  7. R. Zhao, H.Y. Chen, L. Zhang et al., Design and implementation of high efficiency and broadband transmission-type polarization converter based on diagonal split-ring resonator. Prog. Electromagn. Res. 161, 1–10 (2018)

    ADS  Google Scholar 

  8. S.Y. Wang, W. Liu, W. Geyi, Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface. Sci. Rep 8(1), 3791 (2018)

    ADS  Google Scholar 

  9. B. Gerislioglu, A. Ahmadivand, M. Karabiyik et al., VO2-based reconfigurable antenna platform with addressable microheater matrix. Adv. Electron. Mater. 3(9), 1700170 (2017)

    Google Scholar 

  10. Y. Liu, K. Li, Y. Jia et al., Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces. IEEE Trans. Antennas Propag. 64(1), 326–331 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  11. F. Khosravi, P. Mousavi, Bidirectional same-sense circularly polarized slot antenna using polarization converting surface. IEEE Antennas Wirel. Propag. Lett. 13, 1652–1655 (2014)

    ADS  Google Scholar 

  12. M. Jusoh, T. Sabapathy, M.F. Jamlos et al., Reconfigurable four-parasitic-elements patch antenna for high-gain beam switching application. IEEE Antennas Wirel. Propag. Lett. 13, 79–82 (2014)

    ADS  Google Scholar 

  13. P.C. Kim, W.G. Lim, I.S. Seo, Polarization characteristics of a composite stealth radome with a frequency selective surface composed of dipole elements. Compos. Struct. 90.2, 242–246 (2009)

    Google Scholar 

  14. A. Parsa, T. Kodera, C. Caloz, Ferrite based non-reciprocal radome, generalized scattering matrix analysis and experimental demonstration. IEEE Trans. Antennas Propag. 59(3), 810–817 (2011)

    ADS  Google Scholar 

  15. B. Gerislioglu, A. Ahmadivand, N. Pala, Single-and multimode beam propagation through an optothermally controllable Fano clusters-mediated waveguide. J. Lightwave Technol. 35(22), 4961–4966 (2017)

    ADS  Google Scholar 

  16. B. Gerislioglu, A. Ahmadivand, N. Pala, Tunable plasmonic toroidal terahertz metamodulator, Phys. Rev. B, 97(16), 161405

  17. T. Kaelberer, V.A. Fedotov, N. Papasimakis et al., Toroidal dipolar response in a metamaterial. Science 330(6010), 1510–1512 (2010)

    ADS  Google Scholar 

  18. B. Gerislioglu, A. Ahmadivand, N. Pala, Functional quadrumer clusters for switching between Fano and charge transfer plasmons. IEEE Photonics Technol. Lett. 29(24), 2226–2229 (2017)

    ADS  Google Scholar 

  19. W. Liu, S. Chen, Z. Li et al., Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface. Opt. Lett. 40(13), 3185–3188 (2015)

    ADS  Google Scholar 

  20. D. Sui, H. Ma, J. Wang et al., Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces. Appl. Phys. Lett. 109(1), 014104 (2016)

    ADS  Google Scholar 

  21. N.K. Grady, J.E. Heyes, D.R. Chowdhury et al., Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340(6138), 1304–1307 (2013)

    ADS  Google Scholar 

  22. K. Chen, Y. Feng, F. Monticone et al., A reconfigurable active Huygens’ metalens. Adv. Mater. 29(17), 1606422 (2017)

    Google Scholar 

  23. K. Chen, Y. Feng, L. Cui et al., Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial. Sci. Rep. 7, 42802 (2017)

    ADS  Google Scholar 

  24. D. Deslandes, K. Wu, Accurate modeling, wave mechanisms, and design considersions of a substrate integrated waveguide. IEEE Trans. Microw Theory Tech. 54(6), 2516–2526 (2006)

    ADS  Google Scholar 

  25. M. Bozzi, A. Georgiadis, K. Wu, Review of substrate-integrated waveguide circuits and antennas. IET Microw. Antennas Propag. 5(8), 909–920 (2011)

    Google Scholar 

  26. M. Barbuto, F. Bilotti, A. Toscano, Linear-to-circular polarization transformer using electrically small antennas, in Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1–2(2012)

  27. M. Barbuto, F. Trotta, F. Bilotti et al., Filtering chiral particle for rotating the polarization state of antennas and waveguides components. IEEE Trans. Antennas Propag. 65(3), 1468–1471 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  28. X. Ma, C. Huang, W. Pan et al., A dual circularly polarized horn antenna in Ku-band based on chiral metamaterial. IEEE Trans. Antennas Propag. 62(4), 2307–2311 (2014)

    ADS  Google Scholar 

  29. M. Barbuto, F. Trotta, F. Bilotti et al., Design and experimental validation of dual-band circularly polarized horn filtenna. Electron. Lett. 53(10), 641–642 (2017)

    Google Scholar 

  30. Y. Li, Y. Pang, J. Wang et al., Wideband polarization conversion with the synergy of waveguide and spoof surface Plasmon polariton modes. Phys. Rev. Appl. 10(6), 064002 (2018)

    ADS  Google Scholar 

  31. J. Wang, W. Wu, Cavity-based linear-to-circular polarization converter. Opt. Exp. 25(4), 3805–3810 (2017)

    ADS  Google Scholar 

  32. S.A. Winkler, W. Hong, M. Bozzi et al., Polarization rotating frequency selective surface based on substrated waveguide technology. IEEE Trans. Antennas Propag. 58(4), 1202–1213 (2010)

    ADS  Google Scholar 

  33. CST, Microwave studio. http://www.cst.com

  34. F.X. Li, H.Y. Chen, Q.T. He et al., Design and implementation of metamaterial polarization converter with the reflection and transmission polarization conversion simultaneously, J. Opt. (2019) (in press)

  35. R. Sauleau, in Fabry Perot resonators, Encyclopedia of RF and Microwave Engineering, 2, ed. by K. Chang (Wiley, New York, 2005), pp. 1381–1401

    Google Scholar 

  36. H.Y. Chen, H.B. Zhang, L.J. Deng, Design of an ultra-thin magnetic-type radar absorber embedded with FSS. IEEE Antennas Wirel. Propag. Lett. 9, 899–901 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Natural Science Foundation of China (Grant No. 51301031), and Supported by Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Han, L., Zhao, R. et al. Design of the high-efficiency transmission-type polarization converter based on substrate-integrated waveguide (SIW) technology. Appl. Phys. A 125, 258 (2019). https://doi.org/10.1007/s00339-019-2555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2555-3

Navigation