Log in

Theoretical investigation on thermoelectric properties of spin gapless semiconductor \(\hbox {Cr}_{2}\hbox {ZnSi}\)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thermoelectric properties as well as electronic and magnetic properties of Heusler alloy \(\hbox {Cr}_{2}\hbox {ZnSi}\) are investigated by employing the first-principles calculations in conjunction with the Boltzmann transport theory and deformation potential (DP) theory. The system is confirmed to be a fully compensated ferrimagnetic spin-gapless semiconductor. We obtain optimized lattice constant of 5.846 Å and the zero net magnetic moment. The calculated band structure, served as a hint for its promising thermoelectric properties, shows a zero-width energy gap in the spin-up direction together with an open energy gap in the spin-down one. A detailed study of the chemical potential and temperature dependence of the Seebeck coefficient, lattice and electronic thermal conductivities and hence the figure of merit (ZT) is carried out. The n-type system shows higher ZT values than p-type one in both spin directions, indicating the better thermoelectric performance of n-type system for thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wölfing, E. Bucher, J. Phys. Condens. Matter 11, 1697–1709 (1999)

    Article  ADS  Google Scholar 

  2. Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, C. Uher, Appl. Phys. Lett. 79, 4165–4167 (2001)

    Article  ADS  Google Scholar 

  3. G.S. Nolas, J. Poon, M. Kanatzidis, MRS Bull. 31, 199–205 (2006)

    Article  Google Scholar 

  4. C. Yu, T.J. Zhu, R.Z. Shi, Y. Zhang, X.B. Zhao, J. He, Acta Mater. 57, 2757–2764 (2009)

    Article  Google Scholar 

  5. V.J. Kangsabanik, E.A. Alam, J. Mater. Chem. A 5, 6131–6139 (2017)

    Article  Google Scholar 

  6. S.D. Guo, RSC Adv. 6, 47953–47958 (2016)

    Article  Google Scholar 

  7. C.G. Fu, S.Q. Bai, Y.T. Liu, Y.S. Tang, L.D. Chen, X.B. Zhao, T.J. Zhu, Nat. Commun. 6, 8144 (2015)

    Article  ADS  Google Scholar 

  8. T. Fang, S. Zheng, T. Zhou, L. Yan, P. Zhang, Phys. Chem. Chem. Phys. 19, 4411–4417 (2017)

    Article  Google Scholar 

  9. Y.J. Zhang, Z.H. Liu, E.K. Liu, G.D. Liu, X.Q. Ma, G.H. Wu, EPL 111, 37009 (2015)

    Article  ADS  Google Scholar 

  10. A. Jakobsson, P. Mavropoulos, E. Şaşioǧlu, S. Blügel, M. Ležaić, B. Sanyal, I. Galanakis, Phys. Rev. B 91, 174439 (2015)

    Article  ADS  Google Scholar 

  11. P.E. Blöchl, Phys. Rev. B 50, 17953–17979 (1994)

    Article  ADS  Google Scholar 

  12. G. Kresse, J. Hafner, Phys. Rev. B 47, 558–561 (1993)

    Article  ADS  Google Scholar 

  13. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251–14269 (1994)

    Article  ADS  Google Scholar 

  14. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  15. P. Hohenberg, W. Kohn, Phys. Rev. B 136, B864–B871 (1964)

    Article  ADS  Google Scholar 

  16. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133–A1138 (1965)

    Article  ADS  Google Scholar 

  17. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  18. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67–71 (2006)

    Article  ADS  Google Scholar 

  19. G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436–7439 (1996)

    Article  ADS  Google Scholar 

  20. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631–16634 (1993)

    Article  ADS  Google Scholar 

  21. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727–12731 (1993)

    Article  ADS  Google Scholar 

  22. J. Yan, P. Gorai, B. Ortiz, S. Miller, S.A. Barnett, T. Mason, V. Stevanović, E.S. Toberer, Energy Environ. Sci. 8, 983–994 (2015)

    Article  Google Scholar 

  23. J. Callaway, Phys. Rev. 113, 1046–1051 (1959)

    Article  ADS  Google Scholar 

  24. E. Francisco, J.M. Recio, M.A. Blanco, A.M. Pendás, A. Costales, J. Phys. Chem. A 102, 1595–1601 (1998)

    Article  Google Scholar 

  25. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Phys. Rev. B 66, 174429 (2002)

    Article  ADS  Google Scholar 

  26. F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244–247 (1944)

    Article  ADS  Google Scholar 

  27. F. Birch, Phys. Rev. 71, 809–824 (1947)

    Article  ADS  Google Scholar 

  28. Y.Q. Cai, G. Zhang, Y.W. Zhang, J. Am. Chem. Soc. 136, 6269–6275 (2014)

    Article  Google Scholar 

  29. A. Janotti, C.G. Van de Walle, Phys. Rev. B 75, 121201 (2007)

    Article  ADS  Google Scholar 

  30. P.H. Jiang, H.J. Liu, D.D. Fan, L. Cheng, J. Wei, J. Zhang, J.H. Liang, J. Shi, Phys. Chem. Chem. Phys. 17, 27558–27564 (2015)

    Article  Google Scholar 

  31. J. Kang, H. Sahin, H.D. Ozaydin, R.T. Senger, F.M. Peeters, Phys. Rev. B 92, 075413 (2015)

    Article  ADS  Google Scholar 

  32. J. Bardeen, W. Shockley, Phys. Rev. 80, 72–80 (1950)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11875226 and 11874306, the Natural Science Foundation of Chongqing under Grant Nos. CSTC-2011BA6004 and CSTC-2017jcyjBX0035, and the Postgraduates’ Research and Innovation Project of Chongqing (No. CYB17077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Huang, Y., Yuan, H. et al. Theoretical investigation on thermoelectric properties of spin gapless semiconductor \(\hbox {Cr}_{2}\hbox {ZnSi}\). Appl. Phys. A 124, 841 (2018). https://doi.org/10.1007/s00339-018-2259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2259-0

Navigation