Log in

Synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The aim of this work was to study the synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell. With the chemical vapor deposition technique, carbon nanotubes growing in situ on a carbon felt are obtained. A SnO2 sol was applied to the carbon felt to prepare a SnO2-modified carbon nanotubes. X-ray diffraction and energy-dispersive X-ray analysis confirmed that SnO2 existed in the prepared samples. Using the prepared samples as anode electrodes, flexible graphite as cathode, and glucose solution as substrate in microbial fuel cell, the effects of the temperature, substrate concentration, and electrodes on removal rates for chemical oxygen demand and the performance of microbial fuel cell have been analyzed. With substrate concentration of 1500 mg L−1, the microbial fuel cell had an optimal output voltage of 563 mV and a removal rate of 78 % for chemical oxygen demand at 311 K. The composite electrodes are stable and reusable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.R. Bond, D.E. Holmes, L.M. Tender, D.R. Lovely, Science 295, 483 (2002)

    Article  ADS  Google Scholar 

  2. K. Rabaey, G. Lissens, S.D. Sicilians, W. Verstraete, Biotechnol. Lett. 25, 1531 (2003)

    Article  Google Scholar 

  3. Z.B. Wang, X.L. Jia, Y.J. Guan, H. Shen, Mater. Sci. Tech. 31, 43 (2015)

    Article  Google Scholar 

  4. L. **ao, J. Damien, J. Luo, H.D. Jang, J. Huang, Z. He, J. Power Sources 208, 187 (2012)

    Article  ADS  Google Scholar 

  5. M.A. Moqsud, K. Omine, N. Yasufuku, M. Hyodo, Y. Nakata, Waste Manag 33, 2465 (2013)

    Article  Google Scholar 

  6. M. Sun, F. Zhang, Z.H. Tong, G.P. Sheng, Y.Z. Chen, Y. Zhao, Y.P. Chen, S.Y. Zhou, G. Liu, Y.C. Tian, H.Q. Yu, Biosens. Bioelectron. 26, 338 (2010)

    Article  Google Scholar 

  7. N. Wang, T. Jiang, Y.Q. Yang, C.X. Wu, L.H. Guan, Chem. Phys. Lett. 605/606, 35 (2014)

    Article  ADS  Google Scholar 

  8. C. Li, L.B. Zhang, L.L. Ding, H.Q. Ren, H. Cui, Biosens. Bioelectron. 26, 4169 (2011)

    Article  Google Scholar 

  9. H.T. Chou, H.J. Lee, C.Y. Lee, N.H. Tai, H.Y. Chang, Bioresour. Technol. 169, 532 (2014)

    Article  Google Scholar 

  10. L. Jourdin, S. Freguia, B.C. Donose, J. Chen, G.G. Wallace, J. Keller, V. Flexer, J. Mater. Chem. A 2, 13093 (2014)

    Article  Google Scholar 

  11. W.Z. Li, C.H. Liang, J.S. Qiu, W.J. Zhou, H.M. Han, Z.B. Wei, G.Q. Sun, Q. **n, Carbon 40, 791 (2002)

    Article  Google Scholar 

  12. A.N.S. Rao, V.T. Venkatarangaiah, Environ. Sci. Pollut. Res. 21, 3197 (2014)

    Article  Google Scholar 

  13. H. Xu, A. Li, X. Cheng, Int. J. Electrochem. Sci. 6, 5114 (2011)

    Google Scholar 

  14. A.I. del Río, J. Fernández, J. Molina, J. Bonastre, F. Cases, Electrochim. Acta 55, 7282 (2010)

    Article  Google Scholar 

  15. E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou, J. Appl. Phys. 91, 6034 (2002)

    Article  ADS  Google Scholar 

  16. T.J. Lin, Y.J. Zhu, W. Zhang, H.B. **e, C.H. Zhang, L.G. Hang, J. Guangdong Univ. Tech. 24, 1 (2007). (in Chinese)

    Google Scholar 

  17. N.Q. Zhao, J. Ma, C.S. Shi, X.W. Du, J.J. Li, Heat Treat. Metals 34, 100 (2009). (in Chinese)

    Google Scholar 

  18. X.X. Cao, P. Liang, X. Huang, Acta Sci. Circumst. 26, 1894 (2006). (in Chinese)

    Google Scholar 

  19. S.H. Zhang, K.X. Liang, Y. Tan, Acta Phys. Chim. Sin. 27, 2726 (2011). (in Chinese)

    Google Scholar 

  20. X.X. Liu, Q.L. Li, R.P. Wu, New Chem. Mater. 41, 63 (2013). (in Chinese)

    Google Scholar 

  21. Q. Ma, F. Zhou, Y.P. Tang, C.S. Li, S.J. Zhang, Y.H. Li, C.H. Tang, J. Inorg. Mater. 19, 985 (2004). (in Chinese)

    Google Scholar 

  22. H. Li, T.H. Li, J. Funct. Mater. 43, 2839 (2012). (in Chinese)

    ADS  Google Scholar 

  23. W.B. Choi, S. Chae, E. Bae, J.W. Lee, Appl. Phys. Lett. 82, 275 (2003)

    Article  ADS  Google Scholar 

  24. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H.J. Dai, Science 287, 622 (2000)

    Article  ADS  Google Scholar 

  25. J.Y. Nam, H.W. Kim, K.H. Lim, H.S. Shin, Bioresour. Technol. 101(Suppl. 1), S33 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The supports from Jiangsu Provincial Environmental Material and Engineering (K13072) and Yangzhou City Environmental Science (YHK1413) Research Foundation are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Bo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZB., **ong, SC., Guan, YJ. et al. Synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell. Appl. Phys. A 122, 206 (2016). https://doi.org/10.1007/s00339-016-9750-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9750-2

Keywords

Navigation