Log in

Enhanced effect of side-Ohmic contact processing on the 2DEG electron density and electron mobility of In0.17Al0.83N/AlN/GaN heterostructure field-effect transistors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

From the capacitance–voltage curves and current–voltage characteristics of the In0.17Al0.83N/AlN/GaN heterostructure field-effect transistors (HFETs) with side-Ohmic contacts and normal-Ohmic contacts, two-dimensional electron gas (2DEG) electron mobility was calculated. It is found that the polarization Coulomb field scattering (PCF) is closely related to the normal-Ohmic contact processing, and the PCF was weakened by side-Ohmic contact processing in In0.17Al0.83N/AlN/GaN HFETs, similar to that in AlGaN/AlN/GaN HFET devices. Further, due to the stronger spontaneous polarization in the thinner In0.17Al0.83N barrier layer, the influence of the gate bias on the PCF in In0.17Al0.83N/AlN/GaN HFETs is greater than that in AlGaN/AlN/GaN HFETs. As a result, the PCF in In0.17Al0.83N/AlN/GaN HFETs with side-Ohmic contacts is stronger than that in AlGaN/AlN/GaN HFETs with side-Ohmic contacts. Moreover, the 2DEG electron density in the In0.17Al0.83N/AlN/GaN HFETs with side-Ohmic contacts is increased by more than twice compared with the 2DEG electron density in the In0.17Al0.83N/AlN/GaN HFETs with normal-Ohmic contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Pandey, B. Fraboni, D. Cavalcoli, A. Minj, A. Cavallini, Appl. Phys. Lett. 99, 012111 (2011)

    Article  ADS  Google Scholar 

  2. D.S. Lee, X. Gao, S.P. Guo, D. Kopp, P. Fay, T. Palacios, IEEE Electron Device Lett. 32, 1525 (2011)

    Article  ADS  Google Scholar 

  3. L. Zhou, J.H. Leach, X.F. Ni, H. Morkoc, D.J. Smith, J. Appl. Phys. 107, 014508 (2010)

    Article  ADS  Google Scholar 

  4. M. Gonschorek, J.-F. Carlin, E. Feltin, M.A. Py, N. Grandjean, V. Darakchieva, B. Monemar, M. Lorenz, G. Ramm, J. Appl. Phys. 103, 093714 (2008)

    Article  ADS  Google Scholar 

  5. Y.Z. Yue, Z.Y. Hu, J. Guo, B. Sensale-Rodriguez, G.W. Li, R.H. Wang, F. Faria, T. Fang, B. Song, X. Gao, S.P. Guo, T. Kosel, G. Snider, P. Fay, D. Jena, H.L. **ng, IEEE Electron Device Lett. 33, 988 (2012)

    Article  ADS  Google Scholar 

  6. C.B. Luan, Z.J. Lin, Z.H. Feng, L.G. Meng, Y.J. Lv, Z.F. Cao, Y.X. Yu, Z.G. Wang, J. Appl. Phys. 112, 054513 (2012)

    Article  ADS  Google Scholar 

  7. F. González-Posada Flores, C. Rivera, E. Muñoz, Appl. Phys. Lett. 95, 203504 (2009)

    Article  ADS  Google Scholar 

  8. C. Rivera, E. Muñoz, Appl. Phys. Lett. 94, 053501 (2009)

    Article  ADS  Google Scholar 

  9. A.F.M. Anwar, R.T. Webster, K.V. Smith, Appl. Phys. Lett. 88, 203510 (2006)

    Article  ADS  Google Scholar 

  10. Y.J. Ohmaki, M. Tanimoto, S. Akamatsu, T. Mukai, Jpn. J. Appl. Phys. 45, L1168 (2006)

    Article  ADS  Google Scholar 

  11. C.B. Luan, Z.J. Lin, Y.J. Lv, L.G. Meng, Y.X. Yu, Z.F. Cao, H. Chen, Z.G. Wang, Appl. Phys. Lett. 101, 113501 (2012)

    Article  ADS  Google Scholar 

  12. J.Z. Zhao, Z.J. Lin, T.D. Corrigan, Z. Wang, Z.D. You, Z.G. Wang, Appl. Phys. Lett. 91, 173507 (2007)

    Article  ADS  Google Scholar 

  13. Y.J. Lv, Z.J. Lin, Y. Zhang, L.G. Meng, C.B. Luan, Z.F. Cao, H. Chen, Z.G. Wang, Appl. Phys. Lett. 98, 123512 (2011)

    Article  ADS  Google Scholar 

  14. B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, J. Appl. Phys. 85, 7727 (1999)

    Article  ADS  Google Scholar 

  15. M.N. Gurusinghe, S.K. Davidsson, T.G. Andersson, Phys. Rev. B 72, 045316 (2005)

    Article  ADS  Google Scholar 

  16. D. Jena, I. Smorchkova, A.C. Gossard, U.K. Mishra, Phys. Stat. Sol. (b) 228, 617 (2001)

    Article  ADS  Google Scholar 

  17. B.K. Ridley, B.E. Foutz, L.F. Eastman, Phys. Rev. B 61, 16862 (2000)

    Article  ADS  Google Scholar 

  18. K. Hirakawa, H. Sakaki, Phys. Rev. B 33, 8291 (1986)

    Article  ADS  Google Scholar 

  19. Y.F. Gao, M. Zhou, J. Appl. Phys. 109, 014310 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11174182), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20110131110005) and Graduate Independent Innovation Foundation of Shandong University, GIIFSDU (Grant No. yzc12064). The authors would like to thank Dr. Wu Lu from Ohio State University for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojun Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luan, C., Lin, Z., Lv, Y. et al. Enhanced effect of side-Ohmic contact processing on the 2DEG electron density and electron mobility of In0.17Al0.83N/AlN/GaN heterostructure field-effect transistors. Appl. Phys. A 116, 2065–2075 (2014). https://doi.org/10.1007/s00339-014-8403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8403-6

Keywords

Navigation