Log in

Electron concentration dependence of exciton localization and freeze-out at local potential fluctuations in InN films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

InN films with electron concentration ranging from n∼1017 to 1020 cm−3 grown by metal–organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) were investigated by variable-temperature photoluminescence and absorption measurements. The energy positions of absorption edge as well as photoluminescence peak of these InN samples with electron concentration above 1018 cm−3 show a distinct S-shape temperature dependence. With a model of potential fluctuations caused by electron-impurity interactions, the behavior can be quantitatively explained in terms of exciton freeze-out in local potential minima at sufficiently low temperatures, followed by thermal redistribution of the localized excitons when the band gap shrinks with increasing temperature. The exciton localization energy σ loc is found to follow the n 5/12 power relation, which testifies to the observed strong localization effects in InN with high electron concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lu, W.J. Schaff, J. Hwang, H. Wu, W. Yeo, A. Pharkya, L.F. Eastman, Appl. Phys. Lett. 77(16), 2548 (2000)

    Article  ADS  Google Scholar 

  2. K. Xu, A. Yoshikawa, Appl. Phys. Lett. 83(2), 251 (2003)

    Article  ADS  Google Scholar 

  3. A. Yamamoto, Y. Murakami, K. Koide, M. Adachi, A. Hashimoto, Phys. Status Solidi (b) 228, 5 (2001)

    Article  ADS  Google Scholar 

  4. V.Y. Davydov, A.A. Klochikhin, V.V. Emtsev, D.A. Kurdyukov, S.V. Ivanov, V.A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A.V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, E.E. Haller, Phys. Status Solidi (b) 234(3), 787 (2002)

    Article  ADS  Google Scholar 

  5. J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, S.X. Li, E.E. Haller, H. Lu, W.J. Schaff, J. Appl. Phys. 94(7), 4457 (2003)

    Article  ADS  Google Scholar 

  6. J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Phys. Rev. B 66, 201403 (2002)

    Article  ADS  Google Scholar 

  7. B. Arnaudov, T. Paskova, P.P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W.J. Schaff, H. Amano, I. Akasaki, Phys. Rev. B 69, 115216 (2004)

    Article  ADS  Google Scholar 

  8. A.A. Klochikhin, V.Y. Davydov, V.V. Emtsev, A.V. Sakharov, V.A. Kapitonov, B.A. Andreev, H. Lu, W.J. Schaff, Phys. Rev. B 71, 195207 (2005)

    Article  ADS  Google Scholar 

  9. M. Feneberg, J. Däubler, K. Thonke, R. Sauer, P. Schley, R. Goldhahn, Phys. Rev. B 77, 245207 (2008)

    Article  ADS  Google Scholar 

  10. R. Intartaglia, B. Maleyre, S. Ruffenach, O. Briot, T. Taliercio, B. Gil, Appl. Phys. Lett. 86, 142104 (2005)

    Article  ADS  Google Scholar 

  11. G.W. Shu, P.F. Wu, M.H. Lo, J.L. Shen, T.Y. Lin, H.J. Chang, Y.F. Chen, C.F. Shih, C.A. Chang, N.C. Chen, Appl. Phys. Lett. 89, 131913 (2006)

    Article  ADS  Google Scholar 

  12. B. Bansal, A. Kadir, A. Bhattacharya, V.V. Moshchalkov, Appl. Phys. Lett. 93, 021113 (2008)

    Article  ADS  Google Scholar 

  13. Z.L. **e, R. Zhang, B. Liu, L. Li, C.X. Liu, X.Q. **u, H. Zhao, P. Han, S.L. Gu, Y. Shi, Y.D. Zheng, J. Cryst. Growth 298, 409 (2007)

    Article  ADS  Google Scholar 

  14. I. Mahboob, T.D. Veal, C.F. McConville, H. Lu, W.J. Schaff, Phys. Rev. Lett. 92, 036804 (2004)

    Article  ADS  Google Scholar 

  15. L.F.J. Piper, T.D. Veal, I. Mahboob, C.F. McConville, H. Lu, W.J. Schaff, Phys. Rev. B 70, 115333 (2004)

    Article  ADS  Google Scholar 

  16. P. Schley, R. Goldhahn, G. Gobsch, M. Feneberg, K. Thonke, X. Wang, A. Yoshikawa, Phys. Status Solidi B 246, 1177 (2009)

    Article  ADS  Google Scholar 

  17. P. Schley, R. Goldhahn, A.T. Winzer, G. Gobsch, V. Cimalla, O. Ambacher, H. Lu, W.J. Schaff, M. Kurouchi, Y. Nanishi, M. Rakel, C. Cobet, N. Esser, Phys. Rev. B 75, 205204 (2007)

    Article  ADS  Google Scholar 

  18. D.S. Sheng, Y. Makita, K. Ploog, H.J. Queisser, J. Appl. Phys. 53(2), 999 (1982)

    Article  ADS  Google Scholar 

  19. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  ADS  Google Scholar 

  20. Y.P. Varshni, Physica 34, 149 (1967)

    Article  ADS  Google Scholar 

  21. P.G. Eliseev, J. Appl. Phys. 93(9), 5405 (2003)

    Article  ADS  Google Scholar 

  22. Q. Li, S.J. Xu, M.H. **e, S.Y. Tong, J. Phys.: Condens. Matter 17, 4853 (2005)

    Article  ADS  Google Scholar 

  23. A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F.A. Ponce, J. Christen, S. Tanaka, A. Fujioka, Y. Nakagawa, J. Appl. Phys. 95(9), 4670 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Zhang, Z., Zhang, R. et al. Electron concentration dependence of exciton localization and freeze-out at local potential fluctuations in InN films. Appl. Phys. A 99, 139–143 (2010). https://doi.org/10.1007/s00339-010-5594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5594-3

Keywords

Navigation