Log in

Adding radiomics to the 2021 WHO updates may improve prognostic prediction for current IDH-wildtype histological lower-grade gliomas with known EGFR amplification and TERT promoter mutation status

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess whether radiomic features could improve the accuracy of survival predictions of IDH-wildtype (IDHwt) histological lower-grade gliomas (LGGs) over clinicopathological features.

Methods

Preoperative MRI data of 61 patients with IDHwt histological LGGs were included as the institutional training set. The test set consisted of 32 patients from The Cancer Genome Atlas. Radiomic features (n = 186) were extracted using conventional MRIs. The radiomics risk score (RRS) for overall survival (OS) was derived from the elastic net. Multivariable Cox regression analyses with clinicopathological features (including epidermal growth factor receptor [EGFR] amplification and telomerase reverse transcriptase promoter [TERTp] mutation status) and the RRS were performed. The integrated area under the receiver operating curves (iAUCs) from the models with and without the RRS were compared. The net reclassification index (NRI) for 1-year OS was also calculated. The prognostic value of the RRS was evaluated using the external validation set.

Results

The RRS independently predicted OS (hazard ratio = 48.08; p = 0.001). Compared with the clinicopathological model alone, adding the RRS had a better OS prediction performance (iAUCs 0.775 vs. 0.910), which was internally validated (iAUCs 0.726 vs. 0.884, 1-year OS NRI = 0.497), and a similar trend was found on external validation (iAUCs 0.683 vs. 0.705, 1-year OS NRI = 0.733). The prognostic significance of the RRS was confirmed in the external validation set (p = 0.001).

Conclusions

Integrating radiomics with clinicopathological features (including EGFR amplification and TERTp mutation status) can improve survival prediction in patients with IDHwt LGGs.

Key Points

• Radiomics risk score has the potential to improve survival prediction when added to clinicopathological features (iAUCs increased from 0.775 to 0.910).

• NRIs for 1-year OS showed that the radiomics risk score had incremental value over the clinicopathological model.

• The prognostic significance of the radiomics risk score was confirmed in the external validation set (p = 0.001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AIC:

Akaike information criterion

cIMPACT-NOW:

Consortium to Inform Molecular and Practical Approaches to CNS Tumour Taxonomy

EGFR:

Epidermal growth factor receptor

GLSZM:

Grey-level size zone matrix

iAUC:

Integrated area under the time-dependent receiver operating characteristic curve

IDH:

Isocitrate dehydrogenase

IDHwt:

IDH-wild type

LGG:

Lower-grade glioma

LL:

Log likelihood

NRI:

Net reclassification index

OS:

Overall survival

ROC:

Receiver operating characteristic

RRS:

Radiomics risk score

TCGA:

The Cancer Genome Atlas

TERTp:

Telomerase reverse transcriptase promoter

WHO:

World Health Organization

References

  1. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. https://doi.org/10.1093/neuonc/noab106

  2. Aibaidula A, Chan AK-Y, Shi Z et al (2017) Adult IDH wild-type lower-grade gliomas should be further stratified. Neuro Oncol 19:1327–1337

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wijnenga MM, Dubbink HJ, French PJ et al (2017) Molecular and clinical heterogeneity of adult diffuse low-grade IDH wild-type gliomas: assessment of TERT promoter mutation and chromosome 7 and 10 copy number status allows superior prognostic stratification. Acta Neuropathol 134:957–959

    CAS  PubMed  Google Scholar 

  4. Tesileanu CMS, Dirven L, Wijnenga MMJ et al (2020) Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria. Neuro Oncol 22:515–523

    CAS  PubMed  Google Scholar 

  5. Louis DN, Wesseling P, Aldape K et al (2020) cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol 30:844–856

    PubMed  PubMed Central  Google Scholar 

  6. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

    PubMed  Google Scholar 

  7. Park YW, Han K, Ahn SS et al (2018) Whole-tumor histogram and texture analyses of DTI for evaluation of IDH1-mutation and 1p/19q-codeletion status in World Health Organization Grade II Gliomas. AJNR Am J Neuroradiol 39:693–698

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Park YW, Lee N, Ahn SS, Chang JH, Lee SK (2021) "Radiomics and Deep Learning in Brain Metastases: Current Trends and Roadmap to Future Applications." Investig Magn Reson Imaging 25(4):266–280

  9. Choi KS, Sunwoo L (2022) "Artificial Intelligence in Neuroimaging: Clinical Applications." Investig Magn Reson Imaging 26(1):1–9

  10. Choi YS, Ahn SS, Chang JH et al (2020) Machine learning and radiomic phenoty** of lower grade gliomas: improving survival prediction. Eur Radiol 30:3834–3842

    PubMed  Google Scholar 

  11. Beig N, Bera K, Prasanna P et al (2020) Radiogenomic-based survival risk stratification of tumor habitat on Gd-T1w MRI is associated with biological processes in glioblastoma. Clin Cancer Res 26:1866–1876

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bae S, Choi YS, Ahn SS et al (2018) Radiomic MRI phenoty** of glioblastoma: improving survival prediction. Radiology 289:797–806

    PubMed  Google Scholar 

  13. Park JE, Kim HS, Jo Y et al (2020) Radiomics prognostication model in glioblastoma using diffusion- and perfusion-weighted MRI. Sci Rep 10:4250

    PubMed  PubMed Central  Google Scholar 

  14. Choi Y, Nam Y, Jang J et al (2021) Radiomics may increase the prognostic value for survival in glioblastoma patients when combined with conventional clinical and genetic prognostic models. Eur Radiol 31:2084–2093

    CAS  PubMed  Google Scholar 

  15. Park CJ, Han K, Kim H et al (2020) Radiomics risk score may be a potential imaging biomarker for predicting survival in isocitrate dehydrogenase wild-type lower-grade gliomas. Eur Radiol 30:6464–6474

    CAS  PubMed  Google Scholar 

  16. Yan H, Parsons DW, ** G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Park YW, Han k, Ahn SS et al. (2018) "Prediction of IDH1-mutation and 1p/19q-codeletion status using preoperative MR imaging phenotypes in lower grade gliomas." AJNR Am J Neuroradiol 39(1):37–42

  18. Sahm F, Schrimpf D, Jones DT et al (2016) Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol 131:903–910

    CAS  PubMed  Google Scholar 

  19. Na K, Kim H-S, Shim HS, Chang JH, Kang S-G, Kim SH (2019) Targeted next-generation sequencing panel (TruSight Tumor 170) in diffuse glioma: a single institutional experience of 135 cases. J Neurooncol 142:445–454

  20. Bakas S, Akbari H, Sotiras A et al (2017) Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4:170117

    PubMed  PubMed Central  Google Scholar 

  21. Roy S, Butman JA, Pham DL (2017) Robust skull strip** using multiple MR image contrasts insensitive to pathology. Neuroimage 146:132–147

    PubMed  Google Scholar 

  22. Kickingereder P, Isensee F, Tursunova I et al (2019) Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 20:728–740

    PubMed  Google Scholar 

  23. Park YW,  Eom J, Kim Det al (2022) "A fully automatic multiparametric radiomics model for differentiation of adult pilocytic astrocytomas from high-grade gliomas." Eur Radiol 1–10

  24. van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107

    PubMed  PubMed Central  Google Scholar 

  25. Zwanenburg A, Leger S, Vallières M, Löck S (2016) Image biomarker standardisation initiative. ar**v preprint ar**v:161207003

  26. Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268

    CAS  PubMed  Google Scholar 

  27. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Series B Stat Methodol 67:301–320

    Google Scholar 

  28. Simon N, Friedman J, Hastie T, Tibshirani R (2011) Regularization paths for Cox’s proportional hazards model via coordinate descent. J Stat Softw 39:1

    PubMed  PubMed Central  Google Scholar 

  29. Heagerty PJ, Zheng Y (2005) Survival model predictive accuracy and ROC curves. Biometrics 61:92–105

    PubMed  Google Scholar 

  30. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Google Scholar 

  31. Pencina MJ, D'Agostino RB Sr, Demler OV (2012) Novel metrics for evaluating improvement in discrimination: net reclassification and integrated discrimination improvement for normal variables and nested models. Stat Med 31:101–113

    PubMed  Google Scholar 

  32. Olar A, Wani KM, Alfaro-Munoz KD et al (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 129:585–596

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fujimoto K, Arita H, Satomi K et al (2021) TERT promoter mutation status is necessary and sufficient to diagnose IDH-wildtype diffuse astrocytic glioma with molecular features of glioblastoma. Acta Neuropathol 142:323–338

    CAS  PubMed  Google Scholar 

  34. Gittleman H, Sloan AE, Barnholtz-Sloan JS (2020) An independently validated survival nomogram for lower-grade glioma. Neuro Oncol 22:665–674

    PubMed  Google Scholar 

  35. Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468

    CAS  PubMed  Google Scholar 

  36. Berzero G, Di Stefano AL, Ronchi S et al (2020) IDH-wildtype lower grade diffuse gliomas: the importance of histological grade and molecular assessment for prognostic stratification. Neuro Oncol. https://doi.org/10.1093/neuonc/noaa258

  37. Fujimoto K, Arita H, Satomi K et al (2021) TERT promoter mutation status is necessary and sufficient to diagnose IDH-wildtype diffuse astrocytic glioma with molecular features of glioblastoma. Acta Neuropathol. https://doi.org/10.1007/s00401-021-02337-9

  38. Liu X, Li Y, Qian Z et al (2018) A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas. Neuroimage Clin 20:1070–1077

    PubMed  PubMed Central  Google Scholar 

  39. Brat DJ, Aldape K, Colman H et al (2020) cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol 139:603–608

    PubMed  PubMed Central  Google Scholar 

  40. Park YW, Ahn SS, Park CJ et al (2020) Diffusion and perfusion MRI may predict EGFR amplification and the TERT promoter mutation status of IDH-wildtype lower-grade gliomas. Eur Radiol 30:6475–6484

    CAS  PubMed  Google Scholar 

  41. Park YW, Park JE, Ahn SS et al (2021) Magnetic resonance imaging parameters for noninvasive prediction of epidermal growth factor receptor amplification in isocitrate dehydrogenase-wild-type lower-grade gliomas: a multicenter study. Neurosurgery. https://doi.org/10.1093/neuros/nyab136

  42. Park CJ, Han K, Kim H et al (2021) MRI features may predict molecular features of glioblastoma in isocitrate dehydrogenase wild-type lower-grade gliomas. AJNR Am J Neuroradiol 42:448–456

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahn SS, Cha S (2021) Pre- and post-treatment imaging of primary central nervous system tumors in the molecular and genetic era. Korean J Radiol. https://doi.org/10.3348/kjr.2020.1450

  44. Thibault G, Fertil B, Navarro C et al (2013) Shape and texture indexes application to cell nuclei classification. Int J Pattern Recognit Artif Intell 27:1357002

    Google Scholar 

  45. Qazi MA, Vora P, Venugopal C et al (2017) Intratumoural heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol 28:1448–1456

    CAS  PubMed  Google Scholar 

  46. Bernstock JD, Mooney JH, Ilyas A et al (2019) Molecular and cellular intratumoural heterogeneity in primary glioblastoma: clinical and translational implications. J Neurosurg. https://doi.org/10.3171/2019.5.Jns19364:1-9

  47. Lee JK, Wang J, Sa JK et al (2017) Spatiotemporal genomic architecture informs precision oncology in glioblastoma. Nat Genet 49:594–599

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Aibaidula A, Chan AK, Shi Z et al (2017) Adult IDH wild-type lower-grade gliomas should be further stratified. Neuro Oncol 19:1327–1337

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenoty**. Radiology 295:328–338

    PubMed  Google Scholar 

  50. Orlhac F, Lecler A, Savatovski J et al (2021) How can we combat multicenter variability in MR radiomics? Validation of a correction procedure. Eur Radiol 31:2272–2280

    PubMed  Google Scholar 

  51. Sun X, Shi L, Luo Y et al (2015) Histogram-based normalisation technique on human brain magnetic resonance images from different acquisitions. Biomed Eng Online 14:73

    PubMed  PubMed Central  Google Scholar 

  52. Carré A, Klausner G, Edjlali M et al (2020) Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics. Sci Rep 10:12340

    PubMed  PubMed Central  Google Scholar 

  53. Chansik A, Park YW, Ahn SS, Han K, Kim H, Lee SK (2021) "Radiomics machine learning study with a small sample size: Single random training-test set split may lead to unreliable results." PloS One 16(8):e0256152

  54. Park CJ, Park YW, Ahn SS et al (2022) "Quality of radiomics research on brain metastasis: a roadmap to promote clinical translation." Korean J Radiol 23(1):77

  55. Brat DJ, Aldape K, Colman H et al (2018) cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol 136:805–810

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Stichel D, Ebrahimi A, Reuss D et al (2018) Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol 136:793–803

    PubMed  Google Scholar 

Download references

Funding

This research received funding from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Information and Communication Technologies & Future Planning (2020R1A2C1003886). This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A1A01071648). This research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI21C1161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Soo Ahn.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Professor Seung-Koo Lee, MD, PhD, from Yonsei University College of Medicine (slee@yuhs.ac).

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise (K.H., a biostatistics professor with 11 years of experience in biostatistics).

Informed consent

The Institutional Review Board waived the requirement to obtain informed patient consent for this retrospective study.

Ethical approval

The Institutional Review Board waived the requirement of informed patient consent for this retrospective study.

Methodology

• retrospective

• diagnostic or prognostic study

• multicentre study

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y., Kim, S., Park, C. et al. Adding radiomics to the 2021 WHO updates may improve prognostic prediction for current IDH-wildtype histological lower-grade gliomas with known EGFR amplification and TERT promoter mutation status. Eur Radiol 32, 8089–8098 (2022). https://doi.org/10.1007/s00330-022-08941-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-022-08941-x

Keywords

Navigation