Log in

MR imaging of cartilage and its repair in the knee - a review

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Chondral injuries are common lesions of the knee joint, and many patients could benefit from cartilage repair. Widespread cartilage repair techniques require sophisticated noninvasive follow-up using MRI. In addition to the precise morphological assessment of this area of cartilage repair, the cartilage’s biochemical constitution can be determined using biochemical MRI techniques. The combination of the clinical outcome after cartilage repair together with the morphological and biochemical description of the cartilage repair tissue as well as the surrounding cartilage can lead to an optimal follow-up evaluation. The present article on MR imaging techniques of cartilage repair focuses on morphological description and scoring using techniques from conventional 2D through advanced isotropic 3D MRI sequences. Furthermore the ultrastructure of the repair tissue and the surrounding cartilage is evaluated in-vivo by biochemical T1-delayed gadolinium enhanced MRI of cartilage (dGEMRIC), T2 relaxation, and diffusion-weighted imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7a–c

Similar content being viewed by others

References

  1. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504

    PubMed  CAS  Google Scholar 

  2. Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res:S362–S369

  3. Raynauld JP, Martel-Pelletier J, Berthiaume MJ et al (2006) Long term evaluation of disease progression through the quantitative magnetic resonance imaging of symptomatic knee osteoarthritis patients: correlation with clinical symptoms and radiographic changes. Arthritis Res Ther 8:R21

    PubMed  Google Scholar 

  4. Conaghan PG, Felson D, Gold G et al (2006) MRI and non-cartilaginous structures in knee osteoarthritis. Osteoarthr Cartil 14(Suppl A):A87–A94

    PubMed  Google Scholar 

  5. Cicuttini FM, Jones G, Forbes A et al (2004) Rate of cartilage loss at two years predicts subsequent total knee arthroplasty: a prospective study. Ann Rheum Dis 63:1124–1127

    PubMed  CAS  Google Scholar 

  6. Torres L, Dunlop DD, Peterfy C et al (2006) The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthr Cartil 14:1033–1040

    PubMed  CAS  Google Scholar 

  7. Zhai G, Blizzard L, Srikanth V et al (2006) Correlates of knee pain in older adults: Tasmanian Older Adult Cohort Study. Arthritis Rheum 55:264–271

    PubMed  Google Scholar 

  8. Steadman JR, Briggs KK, Rodrigo JJ et al (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19:477–484

    PubMed  Google Scholar 

  9. Steadman JR, Miller BS, Karas SG et al (2003) The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players. J Knee Surg 16:83–86

    PubMed  Google Scholar 

  10. Steadman JR, Rodkey WGBriggs KK (2002) Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg 15:170–6

    PubMed  Google Scholar 

  11. Steadman JR, Rodkey WG, Briggs KK et al (1999) [The microfracture technique in the management of complete cartilage defects in the knee joint]. Orthopade 28:26–32

    PubMed  CAS  Google Scholar 

  12. Jakob RP, Franz T, Gautier E et al (2002) Autologous osteochondral grafting in the knee: indication, results, and reflections. Clin Orthop Relat Res 401:170–184

    PubMed  Google Scholar 

  13. Hangody L, Feczko P, Bartha L et al (2001) Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin Orthop Relat Res 391(Suppl):S328–S336

    Google Scholar 

  14. Bobic V (1999) [Autologous osteo-chondral grafts in the management of articular cartilage lesions]. Orthopade 28:19–25

    PubMed  CAS  Google Scholar 

  15. Brittberg M, Lindahl A, Nilsson A et al (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    PubMed  CAS  Google Scholar 

  16. Petersen L, Brittberg M, Lindahl A (2003) Autologous chondrocyte transplantation of the ankle. Foot Ankle Clin 8:291–303

    PubMed  Google Scholar 

  17. Peterson L, Brittberg M, Kiviranta I et al (2002) Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med 30:2–12

    PubMed  Google Scholar 

  18. Peterson L, Minas T, Brittberg M et al (2003) Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am 85-A(Suppl 2):17–24

    Google Scholar 

  19. Peterson L, Minas T, Brittberg M et al (2000) Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 374:212–234

    PubMed  Google Scholar 

  20. Brittberg M (1999) Autologous chondrocyte transplantation. Clin Orthop Relat Res 367(Suppl):S147–S155

    Google Scholar 

  21. Brittberg M, Lindahl A, Homminga G et al (1997) A critical analysis of cartilage repair. Acta Orthop Scand 68:186–191

    PubMed  CAS  Google Scholar 

  22. Knutsen G, Engebretsen L, Ludvigsen TC et al (2004) Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 86-A:455–464

    PubMed  Google Scholar 

  23. Kreuz PC, Erggelet C, Steinwachs MR et al (2006) Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 22:1180–1186

    PubMed  Google Scholar 

  24. Kreuz PC, Steinwachs MR, Erggelet C et al (2006) Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthr Cartil 14:1119–1125

    PubMed  CAS  Google Scholar 

  25. Szerb I, Hangody L, Duska Z et al (2005) Mosaicplasty: long-term follow-up. Bull Hosp Jt Dis 63:54–62

    PubMed  Google Scholar 

  26. Henderson I, Tuy BOakes B (2004) Reoperation after autologous chondrocyte implantation. Indications and findings. J Bone Joint Surg Br 86:205–211

    PubMed  CAS  Google Scholar 

  27. Nehrer S, Minas T (2000) Treatment of articular cartilage defects. Invest Radiol 35:639–46

    PubMed  CAS  Google Scholar 

  28. Nehrer S, Breinan HA, Ramappa A et al (1998) Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials 19:2313–2328

    PubMed  CAS  Google Scholar 

  29. Dorotka R, Windberger U, Macfelda K et al (2005) Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials 26:3617–629

    PubMed  CAS  Google Scholar 

  30. Dorotka R, Bindreiter U, Macfelda K et al (2005) Marrow stimulation and chondrocyte transplantation using a collagen matrix for cartilage repair. Osteoarthr Cartil 13:655–664

    PubMed  CAS  Google Scholar 

  31. Cortivo R, Brun P, Rastrelli A et al (1991) In vitro studies on biocompatibility of hyaluronic acid esters. Biomaterials 12:727–730

    PubMed  CAS  Google Scholar 

  32. Campoccia D, Doherty P, Radice M et al (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19:2101–2127

    PubMed  CAS  Google Scholar 

  33. Nehrer S, Domayer S, Dorotka R et al (2006) Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur J Radiol 57:3–8

    PubMed  CAS  Google Scholar 

  34. Pavesio A, Abatangelo G, Borrione A et al (2003) Hyaluronan-based scaffolds (Hyalograft C) in the treatment of knee cartilage defects: preliminary clinical findings. Novartis Found Symp 249:203–217, discussion 229–33, 234–8, 239–241

    PubMed  Google Scholar 

  35. Chu CR, Coutts RD, Yoshioka M et al (1995) Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res 29:1147–1154

    PubMed  CAS  Google Scholar 

  36. Behrens P, Bitter T, Kurz B et al (2006) Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)—5-year follow-up. Knee 13:194–202

    PubMed  Google Scholar 

  37. Steinwachs M, Kreuz PC (2007) Autologous chondrocyte implantation in chondral defects of the knee with a type I/III collagen membrane: a prospective study with a 3-year follow-up. Arthroscopy 23:381–387

    Article  PubMed  Google Scholar 

  38. Marcacci M, Berruto M, Brocchetta D et al (2005) Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res 435:96–105

    PubMed  Google Scholar 

  39. Marcacci M, Zaffagnini S, Kon E et al (2002) Arthroscopic autologous chondrocyte transplantation: technical note. Knee Surg Sports Traumatol Arthrosc 10:154–159

    PubMed  CAS  Google Scholar 

  40. Grigolo B, Lisignoli G, Piacentini A et al (2002) Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAff 11): molecular, immunohistochemical and ultrastructural analysis. Biomaterials 23:1187–1195

    PubMed  CAS  Google Scholar 

  41. Eckstein F, Hudelmaier M, Wirth W et al (2006) Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative. Ann Rheum Dis 65:433–441

    PubMed  CAS  Google Scholar 

  42. Link TM, Majumdar S, Peterfy C et al (1998) High resolution MRI of small joints: impact of spatial resolution on diagnostic performance and SNR. Magn Reson Imaging 16:147–155

    PubMed  CAS  Google Scholar 

  43. Rubenstein JD, Li JG, Majumdar S et al (1997) Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. AJR Am J Roentgenol 169:1089–1096

    PubMed  CAS  Google Scholar 

  44. Peterfy CG, Guermazi A, Zaim S et al (2004) Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil 12:177–190

    PubMed  CAS  Google Scholar 

  45. Kornaat PR, Ceulemans RY, Kroon HM et al (2005) MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol 34:95–102

    PubMed  Google Scholar 

  46. Conaghan PGHD, Tennant A, Amin S, Clancy M, Guermazi A et al (2004) Evaluation an MRI scoring system for osteoarthritis of the knee using modern psychometric approaches. Osteoarthr Cartil 12(Suppl B):118 [abstract]

    Google Scholar 

  47. Hunter DJ, Lo GH, Gale D et al (2008) The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 67:206–211

    PubMed  CAS  Google Scholar 

  48. Yoshioka H, Stevens K, Hargreaves BA et al (2004) Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 20:857–864

    PubMed  Google Scholar 

  49. Mohr A, Priebe M, Taouli B et al (2003) Selective water excitation for faster MR imaging of articular cartilage defects: initial clinical results. Eur Radiol 13:686–689

    PubMed  CAS  Google Scholar 

  50. Kawahara Y, Uetani M, Nakahara N et al (1998) Fast spin-echo MR of the articular cartilage in the osteoarthrotic knee. Correlation of MR and arthroscopic findings. Acta Radiol 39:120–125

    PubMed  CAS  Google Scholar 

  51. Broderick LS, Turner DA, Renfrew DL et al (1994) Severity of articular cartilage abnormality in patients with osteoarthritis: evaluation with fast spin-echo MR vs arthroscopy. AJR Am J Roentgenol 162:99–103

    PubMed  CAS  Google Scholar 

  52. Disler DG, McCauley TR, Kelman CG et al (1996) Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol 167:127–132

    PubMed  CAS  Google Scholar 

  53. Recht MP, Kramer J, Marcelis S et al (1993) Abnormalities of articular cartilage in the knee: analysis of available MR techniques. Radiology 187:473–478

    PubMed  CAS  Google Scholar 

  54. Recht MP, Piraino DW, Paletta GA et al (1996) Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 198:209–212

    PubMed  CAS  Google Scholar 

  55. Bredella MA, Tirman PF, Peterfy CG et al (1999) Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol 172:1073–1080

    PubMed  CAS  Google Scholar 

  56. Masi JN, Sell CA, Phan C et al (2005) Cartilage MR imaging at 3.0 versus that at 1.5 T: preliminary results in a porcine model. Radiology 236:140–150

    PubMed  Google Scholar 

  57. Link TM, Sell CA, Masi JN et al (2006) 3.0 vs 1.5 T MRI in the detection of focal cartilage pathology—ROC analysis in an experimental model. Osteoarthr Cartil 14:63–70

    PubMed  CAS  Google Scholar 

  58. Lee KY, Masi JN, Sell CA et al (2005) Computer-aided quantification of focal cartilage lesions using MRI: accuracy and initial arthroscopic comparison. Osteoarthr Cartil 13:728–737

    PubMed  Google Scholar 

  59. McGibbon CA, Trahan CA (2003) Measurement accuracy of focal cartilage defects from MRI and correlation of MRI graded lesions with histology: a preliminary study. Osteoarthr Cartil 11:483–493

    PubMed  Google Scholar 

  60. Graichen H, Al-Shamari D, Hinterwimmer S et al (2005) Accuracy of quantitative magnetic resonance imaging in the detection of ex vivo focal cartilage defects. Ann Rheum Dis 64:1120–1125

    PubMed  CAS  Google Scholar 

  61. Marlovits S, Trattnig S (2006) Cartilage repair. Eur J Radiol 57:1–2

    PubMed  Google Scholar 

  62. Marlovits S, Singer P, Zeller P et al (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23

    PubMed  Google Scholar 

  63. Trattnig S, Millington SA, Szomolanyi P et al (2007) MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol 17:103–118

    PubMed  CAS  Google Scholar 

  64. Trattnig S, Ba-Ssalamah A, Pinker K et al (2005) Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging. Magn Reson Imaging 23:779–787

    PubMed  CAS  Google Scholar 

  65. Winalski CS, Gupta KB (2003) Magnetic resonance imaging of focal articular cartilage lesions. Top Magn Reson Imaging 14:131–144

    PubMed  Google Scholar 

  66. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A (Suppl 2):58–69

    Google Scholar 

  67. Trattnig S, Pinker K, Krestan C et al (2006) Matrix-based autologous chondrocyte implantation for cartilage repair with HyalograftC: two-year follow-up by magnetic resonance imaging. Eur J Radiol 57:9–15

    PubMed  CAS  Google Scholar 

  68. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    PubMed  CAS  Google Scholar 

  69. Trattnig S, Mamisch TC, Welsch GH et al (2007) Quantitative T2 map** of matrix-associated autologous chondrocyte transplantation at 3 Tesla: an in vivo cross-sectional study. Invest Radiol 42:442–448

    PubMed  Google Scholar 

  70. Trattnig S, Marlovits S, Gebetsroither S et al (2007) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T: preliminary results. J Magn Reson Imaging 26:974–982

    PubMed  Google Scholar 

  71. Watanabe A, Wada Y, Obata T et al (2005) Time course evaluation of reparative cartilage with MR imaging after autologous chondrocyte implantation. Cell Transplant 14:695–700

    PubMed  Google Scholar 

  72. Glaser C, Mendlik T, Dinges J et al (2006) Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage. Magn Reson Med 56:527–534

    PubMed  CAS  Google Scholar 

  73. Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time map**: overview and applications. Semin Musculoskelet Radiol 8:355–368

    PubMed  Google Scholar 

  74. Burstein D, Gray ML (2006) Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis? Osteoarthr Cartil 14:1087–1090

    PubMed  CAS  Google Scholar 

  75. Lusse S, Claassen H, Gehrke T et al (2000) Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn Reson Imaging 18:423–430

    PubMed  CAS  Google Scholar 

  76. Menezes NM, Gray ML, Hartke JR et al (2004) T2 and T1rho MRI in articular cartilage systems. Magn Reson Med 51:503–509

    PubMed  CAS  Google Scholar 

  77. Nieminen MT, Rieppo J, Toyras J et al (2001) T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med 46:487–493

    PubMed  CAS  Google Scholar 

  78. **a Y, Moody JB, Alhadlaq H (2002) Orientational dependence of T2 relaxation in articular cartilage: A microscopic MRI (microMRI) study. Magn Reson Med 48:460–469

    PubMed  Google Scholar 

  79. Dardzinski BJ, Mosher TJ, Li S et al (1997) Spatial variation of T2 in human articular cartilage. Radiology 205:546–550

    PubMed  CAS  Google Scholar 

  80. Watrin-Pinzano A, Ruaud JP, Cheli Y et al (2004) Evaluation of cartilage repair tissue after biomaterial implantation in rat patella by using T2 map**. Magma 17:219–228

    PubMed  CAS  Google Scholar 

  81. Goodwin DW, Wadghiri YZDunn JF (1998) Micro-imaging of articular cartilage: T2, proton density, and the magic angle effect. Acad Radiol 5:790–798

    PubMed  CAS  Google Scholar 

  82. Goodwin DW, Zhu HDunn JF (2000) In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy. AJR Am J Roentgenol 174:405–409

    PubMed  CAS  Google Scholar 

  83. Grunder W (2006) MRI assessment of cartilage ultrastructure. NMR Biomed 19:855–876

    PubMed  Google Scholar 

  84. Nissi MJ, Rieppo J, Toyras J et al (2006) T(2) relaxation time map** reveals age- and species-related diversity of collagen network architecture in articular cartilage. Osteoarthr Cartil 14:1265–1271

    PubMed  CAS  Google Scholar 

  85. Shinar H, Navon G (2006) Multinuclear NMR and microscopic MRI studies of the articular cartilage nanostructure. NMR Biomed 19:877–893

    PubMed  Google Scholar 

  86. Goebel JC, Watrin-Pinzano A, Bettembourg-Brault I et al (2006) Age-related quantitative MRI changes in healthy cartilage: preliminary results. Biorheology 43:547–551

    PubMed  Google Scholar 

  87. Mosher TJ, Dardzinski BJ, Smith MB (2000) Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T. Radiology 214:259–266

    PubMed  CAS  Google Scholar 

  88. Mosher TJ, Liu Y, Yang QX et al (2004) Age dependency of cartilage magnetic resonance imaging T2 relaxation times in asymptomatic women. Arthritis Rheum 50:2820–2828

    PubMed  Google Scholar 

  89. White LM, Sussman MS, Hurtig M et al (2006) Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology 241:407–414

    PubMed  Google Scholar 

  90. Welsch GH, Mamisch TC, Domayer S, Dorotka R, Kutsch-Lissberg F, Marlovits S, White L, Trattnig S (2008) Cartilage T2 assessment at 3 Tesla: in vivo differentiation of normal hyaline cartilage and reparative tissue in patients after two different cartilage repair procedures - initial experiences. Radiology 247(1):154–161

    Article  PubMed  Google Scholar 

  91. Gobbi A, Nunag P, Malinowski K (2005) Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 13:213–221

    PubMed  Google Scholar 

  92. Domayer SE, Kutscha-Lissberg F, Welsch GH, et al (2008) T2 map** in the knee after microfracture at 3.0 T: correlation of global T2 values and clinical outcome - preliminary results. Osteoarthr Cartil 16:903–908 doi:10.1016/j.joca.2007.11.014

    PubMed  CAS  Google Scholar 

  93. Kurkijarvi JE, Mattila L, Ojala RO et al (2007) Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC. Osteoarthr Cartil 15:372–378

    PubMed  CAS  Google Scholar 

  94. Lohmander LS (1994) Articular cartilage and osteoarthrosis. The role of molecular markers to monitor breakdown, repair and disease. J Anat 184(Pt 3):477–492

    PubMed  CAS  Google Scholar 

  95. Bashir A, Gray ML, Hartke J et al (1999) Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41:857–865

    PubMed  CAS  Google Scholar 

  96. Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45:36–41

    PubMed  CAS  Google Scholar 

  97. Kim YJ, Jaramillo D, Millis MB et al (2003) Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am 85-A:1987–1992

    PubMed  Google Scholar 

  98. Tiderius CJ, Olsson LE, Leander P et al (2003) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med 49:488–492

    PubMed  Google Scholar 

  99. Roos EM, Dahlberg L (2005) Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum 52:3507–514

    PubMed  CAS  Google Scholar 

  100. McKenzie CA, Williams A, Prasad PV et al (2006) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5T and 3.0T. J Magn Reson Imaging 24:928–933

    PubMed  Google Scholar 

  101. Kimelman T, Vu A, Storey P et al (2006) Three-dimensional T1 map** for dGEMRIC at 3.0 T using the Look Locker method. Invest Radiol 41:198–203

    PubMed  Google Scholar 

  102. Watanabe A, Wada Y, Obata T et al (2006) Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology 239:201–208

    PubMed  Google Scholar 

  103. Wayne JS, Kraft KA, Shields KJ et al (2003) MR imaging of normal and matrix-depleted cartilage: correlation with biomechanical function and biochemical composition. Radiology 228:493–499

    PubMed  Google Scholar 

  104. Gillis A, Bashir A, McKeon B et al (2001) Magnetic resonance imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Invest Radiol 36:743–748

    PubMed  CAS  Google Scholar 

  105. Tins BJ, McCall IW, Takahashi T et al (2005) Autologous chondrocyte implantation in knee joint: MR imaging and histologic features at 1-year follow-up. Radiology 234:501–508

    PubMed  Google Scholar 

  106. Trattnig S, Mamisch TC, Pinker K, Domayer S, Szomolanyi P, Marlovits S, Kutscha-Lissberg F, Welsch GH (2008) Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium enhanced MRI - (dGEMRIC) at 3 Tesla. Eur Radiol 18(6):1251–1259

    PubMed  Google Scholar 

  107. Minas T, Nehrer S (1997) Current concepts in the treatment of articular cartilage defects. Orthopedics 20:525–538

    PubMed  CAS  Google Scholar 

  108. Ghivizzani SC, Oligino TJ, Robbins PD et al (2000) Cartilage injury and repair. Phys Med Rehabil Clin N Am 11:289–307

    PubMed  CAS  Google Scholar 

  109. Kurkijarvi JE, Nissi MJ, Kiviranta I et al (2004) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 characteristics of human knee articular cartilage: topographical variation and relationships to mechanical properties. Magn Reson Med 52:41–46

    PubMed  CAS  Google Scholar 

  110. Williams A, Gillis A, McKenzie C et al (2004) Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am J Roentgenol 182:167–172

    PubMed  Google Scholar 

  111. Miller KL, Hargreaves BA, Gold GE et al (2004) Steady-state diffusion-weighted imaging of in vivo knee cartilage. Magn Reson Med 51:394–398

    PubMed  Google Scholar 

  112. Deoni SC, Peters TMRutt BK (2004) Quantitative diffusion imaging with steady-state free precession. Magn Reson Med 51:428–433

    PubMed  Google Scholar 

  113. Mamisch TC, Menzel MI, Welsch GH et al (2008) Steady-state diffusion imaging for MR in-vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3 Tesla—preliminary results. Eur J Radiol 65:72–79

    PubMed  Google Scholar 

  114. Eckstein F, Burstein D, Link TM (2006) Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 19:822–854

    PubMed  Google Scholar 

  115. Eckstein F, Hudelmaier M, Putz R (2006) The effects of exercise on human articular cartilage. J Anat 208:491–512

    PubMed  CAS  Google Scholar 

  116. Eckstein F, Cicuttini F, Raynauld JP et al (2006) Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthr Cartil 14(Suppl A):A46–A75

    PubMed  Google Scholar 

  117. Eckstein F, Ateshian G, Burgkart R et al (2006) Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthr Cartil 14:974–83

    PubMed  CAS  Google Scholar 

  118. Glaser C, Tins BJ, Trumm CG et al (2007) Quantitative 3D MR evaluation of autologous chondrocyte implantation in the knee: feasibility and initial results. Osteoarthr Cartil 15:798–807

    PubMed  CAS  Google Scholar 

  119. Bashir A, Gray ML, Boutin RD et al (1997) Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2−)-enhanced MR imaging. Radiology 205:551–558

    PubMed  CAS  Google Scholar 

  120. Nehrer S, Spector M, Minas T (1999) Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res 365:149–162

    PubMed  Google Scholar 

  121. Henderson I, Lavigne P, Valenzuela H et al (2007) Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs. Clin Orthop Relat Res 455:253–261

    PubMed  Google Scholar 

  122. Knutsen G, Drogset JO, Engebretsen L et al (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 89:2105–2112

    Google Scholar 

  123. Saris DB, Vanlauwe J, Victor J et al (2008) Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 36:235–246

    PubMed  Google Scholar 

  124. Henderson IJTB, Connell D, Oakes B, Hettwer WH (2003) Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months. J Bone Joint Surg Br 85:1060–1066

    PubMed  CAS  Google Scholar 

  125. Gobbi A, Kon E, Berruto M et al (2006) Patellofemoral full-thickness chondral defects treated with Hyalograft-C: a clinical, arthroscopic, and histologic review. Am J Sports Med 34:1763–1773

    PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by Austrian Science Fund (FWF) FWF-TRP-Projekt L243-B15 and FWF project: P18110 B15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Trattnig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trattnig, S., Domayer, S., Welsch, G.W. et al. MR imaging of cartilage and its repair in the knee - a review. Eur Radiol 19, 1582–1594 (2009). https://doi.org/10.1007/s00330-009-1352-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1352-3

Keywords

Navigation