Log in

Total-body contrast-enhanced MRA on a short, wide-bore 1.5-T system: intra-individual comparison of Gd-BOPTA and Gd-DOTA

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Total-body contrast-enhanced MRA (CE-MRA) provides information of the entire vascular system according to a one-stop-shop approach. Short, wide-bore scanners have not yet been used for total-body CE-MRA, probably due to their restricted field of view in the z-direction. The purpose of this feasibility study is to introduce an image protocol for total-body MRA on a short, wide-bore system. The protocol includes five to six table-moving steps and two injection runs. Two pharmacologically different contrast materials (CM) were applied in ten healthy volunteers in view of possible CM-dependent influences on the protocol outcome (Gd-Bopta, Gd-Dota). Differences consisted of significantly higher CNR with Gd-Bopta with a mean of 73.8 ± 38.7 versus 69.1 ± 34.3 (p = 0.008), significantly better arterial visualization values with Gd-Dota with a mean of 1.26 ± 0.44 versus 1.53 ± 0.73 (p = 0.003) and a tendency to less venous overlay with Gd-Dota, mean 1.19 ± 0.44 and 1.34 ± 0.72, respectively (p = 0.065) (two-tailed Wilcoxon matched-pairs test). Overall 94% of the steps were valued as qualitatively excellent or good. The good results with both CM suggest a transfer to further patient evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prince MR, Narasimham DL, Stanley JC et al (1995) Breath-hold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. Radiology 197:785–792

    PubMed  CAS  Google Scholar 

  2. Snidow JJ, Aisen AM, Harris VJ et al (1995) Iliac artery MR angiography: comparison of three-dimensional gadolinium-enhanced and two-dimensional time-of-flight techniques. Radiology 196:371–378

    PubMed  CAS  Google Scholar 

  3. Hany TF, Debatin JF, Leung DA, Pfammatter T (1997) Evaluation of the aortoiliac and renal arteries: comparison of breath-hold, contrast-enhanced, three-dimensional MR angiography with conventional catheter angiography. Radiology 204:357–362

    PubMed  CAS  Google Scholar 

  4. Rofsky NM, Johnson G, Adelman MA, Rosen RJ, Krinsky GA, Weinreb JC (1997) Peripheral vascular disease evaluated with reduced-dose gadolinium-enhanced MR angiography. Radiology 205:163–169

    PubMed  CAS  Google Scholar 

  5. Ruehm SG, Hany TF, Pfammatter T, Schneider E, Ladd M, Debatin JF (2000) Pelvic and lower extremity arterial imaging: diagnostic performance of three-dimensional contrast-enhanced MR angiography. AJR 174:1127–1135

    PubMed  CAS  Google Scholar 

  6. Ruehm SG, Goyen M, Barkhausen J et al (2001) Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 357:1086–1091

    Article  PubMed  CAS  Google Scholar 

  7. Vogt FM, Ajaj W, Hunold P et al (2004) Venous compression at high-spatial-resolution three-dimensional MR angiography of peripheral arteries. Radiology 233:913–920

    Article  PubMed  Google Scholar 

  8. Ladd SC, Debatin JF, Stang A et al (2007) Whole-body MR vascular screening detects unsuspected concomitant vascular disease in coronary heart disease patients. Eur Radiol 17:1035–1045

    Article  PubMed  Google Scholar 

  9. Pereles FS, Collins JD, Carr JC et al (2006) Accuracy of step**-table lower extremity MR angiography with dual-level bolus timing and separate calf acquisition: hybrid peripheral MR angiography. Radiology 240:283–290

    Article  PubMed  Google Scholar 

  10. Meissner OA, Rieger J, Weber C et al (2005) Critical limb ischemia: hybrid MR angiography compared with DSA. Radiology 235:308–318

    Article  PubMed  Google Scholar 

  11. Goyen M, Herborn CU, Kröger K, Ruehm SG, Debatin JF (2006) Total-body 3D magnetic resonance angiography influences the management of patients with peripheral arterial occlusive disease. Eur Radiol 16:685–691

    Article  PubMed  Google Scholar 

  12. Hansen T, Wikström J, Johansson LO, Lind L, Ahlström H (2007) The prevalence and quantification of atherosclerosis in an elderly population assessed by whole-body magnetic resonance angiography. Arterioscler Thromb Vasc Biol 27:649–654

    Article  PubMed  CAS  Google Scholar 

  13. Herborn CU, Goyen M, Quick H (2004) Whole-body 3D MR angiography of patients with peripheral arterial occlusive disease. AJR 182:1427–1434

    PubMed  Google Scholar 

  14. Cavagna FM, Maggioni F, Castelli PM et al (1997) Gadolinium chelates with weak binding to serum proteins: a new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging. Invest Radiol 32:780–796

    Article  PubMed  CAS  Google Scholar 

  15. Kirchin MA, Pirovano GP, Spinazzi A (1998) Gadobenate dimeglumine (Gd-BOPTA). An overview. Invest Radiol 33:798–809

    Article  PubMed  CAS  Google Scholar 

  16. Magerstadt M, Gansow OA, Brechbiel MW et al (1986) Gd(DOTA): an alternative to Gd(DTPA) as a T1, 2 relaxation agent for NMR imaging or spectroscopy. Magn Reson Med 3:808–812

    Article  PubMed  CAS  Google Scholar 

  17. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724

    Article  PubMed  Google Scholar 

  18. Meaney JF (2003) Magnetic resonance angiography of the peripheral arteries: current status. Eur Radiol 13:836–852

    PubMed  Google Scholar 

  19. Patel N, Sacks D, Patel RI et al (2003) Society of interventional radiology technology assessment committee. SIR reporting standards for the treatment of acute limb ischemia with use of transluminal removal of arterial thrombus. J Vasc Interv Radiol 14:453–465

    Google Scholar 

  20. Fenchel M, Requardt M, Tomaschko K et al (2005) Whole-body MR angiography using a novel 32-receiving-channel MR system with surface coil technology: first clinical experience. J Magn Reson Imaging 21:596–603

    Article  PubMed  Google Scholar 

  21. Klessen C, Asbach P, Hein PA et al (2006) [Whole-body MR angiography: comparison of two protocols for contrast media injection]. Rofo 178:484–490

    PubMed  CAS  Google Scholar 

  22. Wyttenbach R, Gianella S, Alerci M, Braghetti A, Cozzi L, Gallino A (2003) Prospective blinded evaluation of Gd-Dota- versus Gd-Bopta-enhanced peripheral MR angiography, as compared with digital subtraction angiography. Radiology 227:261–269

    Article  PubMed  Google Scholar 

  23. Bilecen D, Aschwanden M, Heidecker HG, Bongartz G (2004) Optimized assessment of hand vascularization on contrast-enhanced MR angiography with a subsystolic continuous compression technique. AJR 182:180–182

    PubMed  Google Scholar 

  24. Herborn CU, Ajaj W, Goyen M, Massing S, Ruehm SG, Debatin JF (2004) Peripheral vasculature: whole-body MR angiography with midfemoral venous compression—initial experience. Radiology 230:872–878

    Article  PubMed  Google Scholar 

  25. Gluecker TM, Bongartz G, Ledermann HP, Bilecen D (2006) MR angiography of the hand with subsystolic cuff-compression optimization of injection parameters. AJR 187:905–910

    Article  PubMed  Google Scholar 

  26. Bilecen D, Jager KA, Aschwanden M, Heidecker HG, Schulte AC, Bongartz G (2004) Cuff-compression of the proximal calf to reduce venous contamination in contrast-enhanced step**-table magnetic Resonance angiography. Acta Radiol 45:510–515

    Article  PubMed  CAS  Google Scholar 

  27. Vogt FM, Zenge MO, Ladd ME et al (2007) Peripheral vascular disease: comparison of continuous MR angiography and conventional MR angiography-pilot study. Radiology 243:229–238

    Article  PubMed  Google Scholar 

  28. Kruger DG, Riederer SJ, Grimm RC, Rossman PJ (2002) Continuously moving table data acquisition method for long FOV contrast-enhanced MRA and whole-body MRI. Magn Reson Med 47:224–231

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Tanja Haas and Philipp Madoerin for their great support for MR scanning and image preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rasmus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasmus, M., Bremerich, J., Egelhof, T. et al. Total-body contrast-enhanced MRA on a short, wide-bore 1.5-T system: intra-individual comparison of Gd-BOPTA and Gd-DOTA. Eur Radiol 18, 2265–2273 (2008). https://doi.org/10.1007/s00330-008-0976-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-0976-z

Keywords

Navigation