Log in

Cloning of CAT genes in Satsuma mandarin and their expression characteristics in response to environmental stress and arbuscular mycorrhizal fungi

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

CitCAT1 and CitCAT2 were cloned and highly expressed in mature leaves. High temperatures up-regulated CitCAT1 expression, while low temperatures and Diversispora versiformis up-regulated CitCAT2 expression, maintaining a low oxidative damage.

Abstract

Catalase (CAT), a tetrameric heme-containing enzyme, removes hydrogen peroxide (H2O2) to maintain low oxidative damage in plants exposed to environmental stress. This study aimed to clone CAT genes from Citrus sinensis cv. “Oita 4” and analyze their expression patterns in response to environmental stress, exogenous abscisic acid (ABA), and arbuscular mycorrhizal fungal inoculation. Two CAT genes, CitCAT1 (NCBI accession: PP067858) and CitCAT2 (NCBI accession: PP061394) were cloned, and the open reading frames of their proteins were 1479 bp and 1539 bp, respectively, each encoding 492 and 512 amino acids predicted to be localized in the peroxisome, with CitCAT1 being a stable hydrophilic protein and CitCAT2 being an unstable hydrophilic protein. The similarity of their amino acid sequences reached 83.24%, and the two genes were distantly related. Both genes were expressed in stems, leaves, flowers, and fruits, accompanied by the highest expression in mature leaves. In addition, CitCAT1 expression was mainly up-regulated by high temperatures (37 °C), exogenous ABA, and PEG stress within a short period of time, whereas CitCAT2 expression was up-regulated by exogenous ABA and low-temperature (4 °C) stress. Low temperatures (0 °C) for 12 h just up-regulated CitCAT2 expression in Diversispora versiformis-inoculated plants, and D. versiformis inoculation up-regulated CitCAT2 expression, along with lower hydrogen peroxide and malondialdehyde levels in mycorrhizal plants at low temperatures. It is concluded that CitCAT2 has an important role in resistance to low temperatures as well as mycorrhizal enhancement of host resistance to low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  • Acevedo A, Scandalios JG (1990) Expression of the catalase and superoxide dismutase genes in mature pollen in maize. Theor Appl Genet 80:705–711

    Article  CAS  PubMed  Google Scholar 

  • Acevedo A, Williamson JD, Scandalios JG (1991) Photoregulation of the Cat2 and Cat3 catalase genes in pigmented and pigment-deficient maize: the circadian regulation of Cat3 is superimposed on its quasi-constitutive expression in maize leaves. Genetics 127(3):601–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Tyagi A, Bae H (2023) ROS interplay between plant growth and stress biology: challenges and future perspectives. Plant Physiol Biochem 203:108032

    Article  CAS  PubMed  Google Scholar 

  • Amna M, Guillaume Q, Sejir C, Chaouch S, Vanderauwera S, Breusegem FV, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 15:4197–4220

    Google Scholar 

  • Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan E, Kachhap K, Mohamed AA, Thangavel P, Devi GD, Vasudhevan P, Sofo A, Khan NA, Misra AN, Lukatkin AS, Singh HP, Pereira E, Tuteja N (2016) Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut R 23(19):19002–19029

    Article  CAS  Google Scholar 

  • Bai XM, Dong SW, Yang YN, Song Y, Zhang HG, Li SJ (2019) Cloning and expression analysis of catalase gene (LoCAT1) from Larix olgensis. Bull Bot Res 39:539–546

    Google Scholar 

  • Barrero-Sicilia C, Silvestre S, Haslam RP, Michaelson LV (2017) Lipid remodelling: Unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. Plant Sci 263:194–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HJ, Wu SD, Huang GJ, Shen CY, Afiyanti M, Li WJ, Lin YH (2012) Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and HO elevation. J Plant Physiol 169(1):86–97

    Article  CAS  PubMed  Google Scholar 

  • Chu XT, Fu JJ, Sun YF, Xu YM, Miao YJ, Xu YF, Hu TM (2016) Effect of arbuscular mycorrhizal fungi inoculation on cold stress-induced oxidative damage in leaves of Elymus nutans Griseb. S Afr J Bot 104:21–29

    Article  CAS  Google Scholar 

  • Ding Y, Yang S (2022) Surviving and thriving: how plants perceive and respond to temperature stress. Dev Cell 57:947–958

    Article  CAS  PubMed  Google Scholar 

  • Drory A, Woodson WR (1992) Molecular cloning and nucleotide sequence of a cDNA encoding catalase from tomato. J Plant Physiol 100:1605

    Article  CAS  Google Scholar 

  • Du YY, Wang PC, Chen J, Song CP (2008) Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J Integr Plant Biol 50(10):1318–1326

    Article  CAS  PubMed  Google Scholar 

  • Duc NH, Csintalan Z, Posta K (2018) Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol Biochem 132:297–307

    Article  CAS  PubMed  Google Scholar 

  • Furtauer L, Weiszmann J, Weckwerth W, Nägele (2019) Dynamics of plant metabolism during cold acclimation. Int J Mol Sci 20:5411

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajiboland R, Joudmand A, Aliasgharzad N, Tolrá R, Poschenrieder C (2019) Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley. Crop Past Sci 70(3):218–233

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61(6):1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Hou H, Wang SP, Zhang CQ, **ang YU, Yan LU, Jia H, Wang J, Ying LI, Shen L (2019) Cloning of Catalase2 (CAT2) gene and study on its expression pattern in Nicotiana tabacum L. Chin Tobacco Sci 40(1):1–8

    Google Scholar 

  • Iwamoto M, Higo H, Higo K (2000) Differential diurnal expression of rice catalase genes: the 5′-flanking region of CatA is not sufficient for circadian control. Plant Sci 151(1):39–46

    Article  CAS  Google Scholar 

  • Jiang JL (2016) Physiological response of Hanzhong’s main citrus varieties to low temperature stress. Henan Agric Sci 45(3):106–111

    Google Scholar 

  • Jiang WX, Ye Q, Wu Z, Zhang QY, Wang LH, Liu XF, Guo DD, Wang XQ, Zhang ZL, He HH, Hu LF (2023) Analysis of CAT gene family and functional identification of OsCAT3 in rice. Genes 14(1):138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo J, Lee YH, Song SI (2014) Rice CatA, CatB, and CatC are involved in environmental stress response, root growth, and photorespiration, respectively. J Plant Biol 57:375–382

    Article  CAS  Google Scholar 

  • Lee SH, An CS (2005) Differential expression of three catalase genes in hot pepper (Capsicum annuum L.). Mol Cells 20(2):247‒255

  • Lewandowska A (2017) Genetic screen of Arabidopsis cat2 suppressor mutants to understand the signaling pathways leading to photorespiratory H2O2 induced cell death. Free Radical Biol Med 108:17

    Article  Google Scholar 

  • Li Y, Yu WC, Chen YY, Tian WM (2019) Molecular cloning and expression analysis of HbCAT2 in rubber tree (Hevea brasiliensis). Mol Plant Breed 17(21):6993–7002

    Google Scholar 

  • Li QS, **e YC, Rahman MM, Hashem A, Abd_Allah EF, Wu QS (2022) Arbuscular mycorrhizal fungi and endophytic fungi activate leaf antioxidant defense system of lane late navel orange. J Fungi 8(3):282

    Article  CAS  Google Scholar 

  • Li QS, Srivastava AK, Zou YN, Wu QS (2023) Field inoculation responses of arbuscular mycorrhizal fungi versus endophytic fungi on sugar metabolism associated changes in fruit quality of Lane late navel orange. Sci Hortic 308:111587

    Article  CAS  Google Scholar 

  • Liu XQ, Cheng S, Aroca R, Zou YN, Wu QS (2022) Arbuscular mycorrhizal fungi induce flavonoid synthesis for mitigating oxidative damage of trifoliate orange under water stress. Environ Exp Bot 204:105089

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Sun C, Bai L, Dong R, Yan Y, Yu XC, Li Y (2018) Transcriptome analysis of cucumber roots reveals key cold-resistance genes induced by AM fungi. Plant Mol Biol Rep 36:135–148

    Article  CAS  Google Scholar 

  • Ma WY, Qin QY, Zou YN, Kuča K, Giri B, Wu QS, Hashem A, Al-Arjani A-BF, Almutairi KF, Abd_Allah EF, Xu YJ (2022) Arbuscular mycorrhiza induces low oxidative burst in drought-stressed walnut through activating antioxidant defense systems and heat shock transcription factor expression. Front Plant Sci 13:1089420

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmoud LM, Vincent CI, Grosser JW, Dutt M (2021) The response of salt-stressed Valencia sweet orange (Citrus sinensis) to salicylic acid and methyl jasmonate treatments. Plant Physiol Rep 26:137–151

    Article  CAS  Google Scholar 

  • Matsumura T, Tabayashi N, Kamagata Y, Souma C, Saruyama H (2010) Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol Plant 116(3):317–327

    Article  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Breusegem FV (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61(15):4197–4220

    Article  CAS  PubMed  Google Scholar 

  • Niewiadomska E, Polzien L, Desel C, Rozpadek P, Miszalski Z, Krupinska K (2009) Spatial patterns of senescence and development-dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves. J Plant Physiol 166(10):1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Pasbani B, Salimi A, Aliasgharzad N, Hajiboland R (2020) Colonization with arbuscular mycorrhizal fungi mitigates cold stress through improvement of antioxidant defense and accumulation of protecting molecules in eggplants. Sci Hortic 272:109575

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158–161

    Article  Google Scholar 

  • Raza A, Su W, Gao A, Mehmood SS, Hussain MA, Nie WL, Lv Y, Zou XL, Zhang XK (2021) Catalase (CAT) gene family in rapeseed (Brassica napus L.): genome-wide analysis, identification, and expression pattern in response to multiple hormones and abiotic stress conditions. Int J Mol Sci 22(8):4281

  • Shirani BS, Mohammad M (2020) Arbuscular mycorrhizal fungi inoculation to enhance chilling stress tolerance of watermelon. Gesunde Pflanz 72(2):171–179

    Article  Google Scholar 

  • Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161(3):613‒619

  • Sun M, Han JW, Wang ML, Zhang LP, Zhang X, Guo SL, Yin HB (2021) Identification of the CAT gene family in Chenopodium quinoa. Mol Plant Breed 19:5933–5942

    Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang W, Cheng YY, Chen DD, Liu D, Hu MJ, Dong J, Zhang XP, Song LR, Shen FF (2019) The catalase gene family in cotton: genome-wide characterization and bioinformatics analysis. Cells 8(2):86

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zou YN, Shu B, Wu QS (2023) Deciphering molecular mechanisms regarding enhanced drought tolerance in plants by arbuscular mycorrhizal fungi. Sci Hortic 308:111591

    Article  CAS  Google Scholar 

  • **ng Y, Jia W, Zhang J (2007) AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis. J Exp Bot 58(11):2969–2981

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Zou YN, Tian ZH, Wu QS, Kuča K (2021) Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Sci Hortic 277:109815

    Article  CAS  Google Scholar 

  • Zhang F, Zou YN, Wu QS, Kuča K (2020) Arbuscular mycorrhizas modulate rootpolyamine metabolism to enhance drought tolerance of trifoliate orange. Environ Exp Bot 171:103926

    Article  CAS  Google Scholar 

  • Zhang Y, Zheng L, Yun L, Ji L, Li GH, Ji MC, Shi Y, Zheng X (2022) Catalase (CAT) gene family in wheat (Triticum aestivum L.): evolution, expression pattern and function analysis. Int J Mol Sci 23:542

  • Zimmermann P, Heinlein C, Orendi G, Zentgraf U (2010) Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ 29:1049–1060

    Article  Google Scholar 

  • Zou YN, Wu QS, Kuča K (2021) Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol 23:50–57

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work received the support of the Hubei Agricultural Science and Technology Innovation Action Project (Hubei Nongfa [2018] No. 1). The authors extend their appreciation to the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R355), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The work was also supported from Excellence project PrF UHK 2216/2023-2024.

Funding

Hubei Agricultural Science and Technology Innovation Action Project, Hubei Nongfa [2018] No. 1, Qiang-Sheng Wu, Princess Nourah bint Abdulrahman University Researchers Supporting Project number, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia, PNURSP2024R355, Mashael Daghash Alqahtani, Excellence project PrF UHK, 2216/2023-2024, Kamil Kuča.

Author information

Authors and Affiliations

Authors

Contributions

Liu Z, Cao MA and Wu QS conceived and designed the research study. Liu Z and Cao MA conducted the experiment and analyzed the data. Liu Z wrote the original draft manuscript. Kuča K, Alqahtani MD, Muthuramalingam P, and Wu QS revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qiang-Sheng Wu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Communicated by Muthu Thiruvengadam.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Cao, MA., Kuča, K. et al. Cloning of CAT genes in Satsuma mandarin and their expression characteristics in response to environmental stress and arbuscular mycorrhizal fungi. Plant Cell Rep 43, 123 (2024). https://doi.org/10.1007/s00299-024-03218-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00299-024-03218-7

Keywords

Navigation