Log in

Compatibilization of poly(butylene adipate-co-terephthalate)/polylactic acid blends by gamma radiation

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA) is a widely used biopolymer and is currently produced on a global scale. However, PLA has low melt strength, which limits its application. Poly(butylene adipate-co-terephthalate) (PBAT) is a fully biodegradable polymer and one of the most attractive polymers for hardening PLA. As PLA and PBAT are immiscible, they need to be compatibilized to improve the properties of the blend. In this context, the compatibilization of PLA/PBAT blends was investigated through an irradiation process. PLA was previously irradiated, at different absorbed doses, in a cobalt-60 source to assess the compatibility of its blends with PBAT. Differential scanning calorimetry showed a reduction in the glass transition, cold crystallization and melting temperatures, and a second melting peak was observed after polymer irradiation. Also, X-ray diffraction analyses revealed a slight increase in the crystalline fraction. Thermogravimetric analysis showed that as the absorbed dose increased, the thermal stability of PLA decreased. Fourier-transform infrared spectroscopy shows bands attributed to oxidized terminations of polymer chains with carbonyls attributed to the effect of irradiation exposure. For samples irradiated above 100 kGy, an increase in tensile strength and tensile modulus can be observed as the dose increases. Rheological measurements showed a decrease in the complex viscosity of irradiated PLA with increasing absorbed dose. The surface of the polymer blend with PLA irradiated with gamma rays at 150 kGy appears to be more homogeneous according to scanning electron analysis. The polymer blend with 150 kGy irradiated PLA showed improved interaction between the components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Cheng J, Lin X, Wu X et al (2021) Preparation of a multifunctional silver nanoparticles polylactic acid food packaging film using mango peel extract. Int J Biol Macromol 188:678–688. https://doi.org/10.1016/j.ijbiomac.2021.07.161

    Article  CAS  PubMed  Google Scholar 

  2. Thiyagu TT, Sai Prasanna KumarGurusamy JVP et al (2023) Effect of cashew shell biomass synthesized cardanol oil green compatibilizer on flexibility, barrier, thermal, and wettability of PLA/PBAT biocomposite films. Biomass Convers Biorefin 13:11841–11851. https://doi.org/10.1007/s13399-021-01941-9

    Article  CAS  Google Scholar 

  3. Su S, Kopitzky R, Tolga S, Kabasci S (2019) Polylactide (PLA) and its blends with poly(butylene succinate) (PBS): a brief review. Polymers (Basel) 11:1193. https://doi.org/10.3390/polym11071193

    Article  CAS  PubMed  Google Scholar 

  4. Aversa C, Barletta M, Cappiello G, Gisario A (2022) Compatibilization strategies and analysis of morphological features of poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: a state-of-art review. Eur Polym J 173:111304. https://doi.org/10.1016/j.eurpolymj.2022.111304

    Article  CAS  Google Scholar 

  5. Fu Y, Wu G, Bian X et al (2020) Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (pla), and their blend in freshwater with sediment. Molecules 25:3946. https://doi.org/10.3390/molecules25173946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kanwal A, Zhang M, Sharaf F, Li C (2022) Polymer pollution and its solutions with special emphasis on poly (butylene adipate terephthalate (PBAT)). Polym Bull 79:9303–9330. https://doi.org/10.1007/s00289-021-04065-2

    Article  CAS  Google Scholar 

  7. Ding Y, Lu B, Wang P et al (2018) PLA-PBAT-PLA tri-block copolymers: effective compatibilizers for promotion of the mechanical and rheological properties of PLA/PBAT blends. Polym Degrad Stab 147:41–48. https://doi.org/10.1016/j.polymdegradstab.2017.11.012

    Article  CAS  Google Scholar 

  8. Cardoso ECL, Parra DF, Scagliusi SR et al (2019) Study of bio-based foams prepared from PBAT/PLA reinforced with bio-calcium carbonate and compatibilized with gamma radiation. Use of gamma radiation techniques in peaceful applications. IntechOpen, London, pp 139–156

    Google Scholar 

  9. Farias da Silva JM, Soares BG (2021) Epoxidized cardanol-based prepolymer as promising biobased compatibilizing agent for PLA/PBAT blends. Polym Test 93:106889. https://doi.org/10.1016/j.polymertesting.2020.106889

    Article  CAS  Google Scholar 

  10. Han Y, Shi J, Mao L et al (2020) Improvement of compatibility and mechanical performances of PLA/PBAT composites with epoxidized soybean oil as compatibilizer. Ind Eng Chem Res 59:21779–21790. https://doi.org/10.1021/acs.iecr.0c04285

    Article  CAS  Google Scholar 

  11. Phetwarotai W, Phusunti N, Aht-Ong D (2019) Preparation and characteristics of poly(butylene adipate-co-terephthalate)/polylactide blend films via synergistic efficiency of plasticization and compatibilization. Chin J Polym Sci 37:68–78. https://doi.org/10.1007/s10118-019-2174-7

    Article  CAS  Google Scholar 

  12. Phetwarotai W, Zawong M, Phusunti N, Aht-Ong D (2021) Toughening and thermal characteristics of plasticized polylactide and poly(butylene adipate-co-terephthalate) blend films: influence of compatibilization. Int J Biol Macromol 183:346–357. https://doi.org/10.1016/j.ijbiomac.2021.04.172

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Peng S, Chen H et al (2019) Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Compos B Eng 173:107028. https://doi.org/10.1016/j.compositesb.2019.107028

    Article  CAS  Google Scholar 

  14. de Castro DP, Sartori MDN, de Silva LG (2019) Effects of gamma radiation on the properties of the thermoplastic starch/poly (butylene adipate-co-terephthalate) blends. Mater Res 22:1–6. https://doi.org/10.1590/1980-5373-mr-2019-0072

    Article  CAS  Google Scholar 

  15. Jeon JS, Han DH, Shin BY (2018) Improvements in the rheological properties, impact strength, and the biodegradability of PLA/PCL blend compatibilized by electron-beam irradiation in the presence of a reactive agent. Adv Mater Sci Eng 2018:1–8. https://doi.org/10.1155/2018/5316175

    Article  CAS  Google Scholar 

  16. Kumar A, Tumu VR, Ray Chowdhury S, Ramana Reddy SVS (2019) A green physical approach to compatibilize a bio-based poly (lactic acid)/lignin blend for better mechanical, thermal and degradation properties. Int J Biol Macromol 121:588–600. https://doi.org/10.1016/j.ijbiomac.2018.10.057

    Article  CAS  PubMed  Google Scholar 

  17. Kumar A, Tumu VR (2019) Physicochemical properties of the electron beam irradiated bamboo powder and its bio-composites with PLA. Compos B Eng 175:107098. https://doi.org/10.1016/j.compositesb.2019.107098

    Article  CAS  Google Scholar 

  18. Wang W, Zhang X, Mao Z, Zhao W (2019) Effects of gamma radiation on the impact strength of polypropylene (PP)/high density polyethylene (HDPE) blends. Results Phys 12:2169–2174. https://doi.org/10.1016/j.rinp.2019.02.020

    Article  Google Scholar 

  19. Yin Y, Deng P, Zhang W, **ng Y (2018) Effect of enhanced γ-irradiation on the compatibility of polyethylene terephthalate-based basalt fiber-reinforced composites. Adv Polym Technol 37:3376–3383. https://doi.org/10.1002/adv.22121

    Article  CAS  Google Scholar 

  20. Fang H, Zhang Y, Bai J et al (2013) Bimodal architecture and rheological and foaming properties for gamma-irradiated long-chain branched polylactides. RSC Adv 3:8783. https://doi.org/10.1039/c3ra40879e

    Article  CAS  Google Scholar 

  21. Dechet MA, Demina A, Römling L et al (2020) Development of poly(L-lactide) (PLLA) microspheres precipitated from triacetin for application in powder bed fusion of polymers. Addit Manuf 32:100966. https://doi.org/10.1016/j.addma.2019.100966

    Article  CAS  Google Scholar 

  22. Butto M, Maspoch ML, Bernal C (2023) Effect of post-drawing thermal treatment on the mechanical behavior of solid-state drawn poly(lactic acid) (PLA) filaments. Textiles 3:339–352. https://doi.org/10.3390/textiles3030023

    Article  Google Scholar 

  23. American Society for Testing and Materials (2014) Standard test method for tensile properties of plastics. ASTM International, Pennsylvania, pp 1–17

    Google Scholar 

  24. American Society for Testing and Materials (2012) Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning. ASTM International, Pennsylvania, pp 1–7

    Google Scholar 

  25. Hernández-López M, Correa-Pacheco ZN, Bautista-Baños S et al (2019) Bio-based composite fibers from pine essential oil and PLA/PBAT polymer blend. Morphological, physicochemical, thermal and mechanical characterization. Mater Chem Phys 234:345–353. https://doi.org/10.1016/j.matchemphys.2019.01.034

    Article  CAS  Google Scholar 

  26. Su S, Duhme M, Kopitzky R (2020) Uncompatibilized pbat/pla blends: manufacturability, miscibility and properties. Materials 13:1–17. https://doi.org/10.3390/ma13214897

    Article  CAS  Google Scholar 

  27. American Society for Testing and Materials (2020) Standard test method for compositional analysis by thermogravimetry. ASTM International, Pennsylvania, pp 1–6

    Google Scholar 

  28. Alsabbagh A, Abu Saleem R, Almasri R et al (2021) Effects of gamma irradiation on 3D-printed polylactic acid (PLA) and high-density polyethylene (HDPE). Polym Bull 78:4931–4945. https://doi.org/10.1007/s00289-020-03349-3

    Article  CAS  Google Scholar 

  29. Tosakul T, Suetong P, Chanthot P, Pattamaprom C (2022) Degradation of polylactic acid and polylactic acid/natural rubber blown films in aquatic environment. J Polym Res 29:242. https://doi.org/10.1007/s10965-022-03039-w

    Article  CAS  Google Scholar 

  30. Chow W, Tham W, Seow P (2013) Effects of maleated-PLA compatibilizer on the properties of poly(lactic acid)/halloysite clay composites. J Thermoplast Compos Mater 26:1349–1363. https://doi.org/10.1177/0892705712439569

    Article  CAS  Google Scholar 

  31. Ruf MFHM, Ahmad S, Chen RS et al (2018) Liquid natural rubber toughened poly(lactic acid) blend: effects of compatibilizer types and loadings on thermo-mechanical properties. Malays J Anal Sci 22:885–891. https://doi.org/10.17576/mjas-2018-2205-16

    Article  Google Scholar 

  32. Cai Y, Lv J, Feng J (2013) Spectral characterization of four kinds of biodegradable plastics: poly (lactic acid), poly (butylenes adipate-co-terephthalate), poly (hydroxybutyrate-co-hydroxyvalerate) and poly (butylenes succinate) with FTIR and Raman spectroscopy. J Polym Environ 21:108–114. https://doi.org/10.1007/s10924-012-0534-2

    Article  CAS  Google Scholar 

  33. Correa-Pacheco ZN, Black-Solís JD, Ortega-Gudiño P et al (2019) Preparation and characterization of bio-based PLA/PBAT and cinnamon essential oil polymer fibers and life-cycle assessment from hydrolytic degradation. Polymers (Basel) 12:38. https://doi.org/10.3390/polym12010038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kilic NT, Can BN, Kodal M, Ozkoc G (2019) Compatibilization of PLA/PBAT blends by using epoxy-POSS. J Appl Polym Sci 136:47217. https://doi.org/10.1002/app.47217

    Article  CAS  Google Scholar 

  35. Rebelo RC, Gonçalves LPC, Fonseca AC et al (2022) Increased degradation of PLA/PBAT blends with organic acids and derivatives in outdoor weathering and marine environment. Polymer (Guildf) 256:125223. https://doi.org/10.1016/j.polymer.2022.125223

    Article  CAS  Google Scholar 

  36. Zhudi Z, Wenxue Y, **nfang C (2002) Study on increase in crystallinity in γ-irradiated poly(vinylidene fluoride). Radiat Phys Chem 65:173–176. https://doi.org/10.1016/S0969-806X(02)00194-9

    Article  Google Scholar 

  37. Satti AJ, Ressia JA, Cerrada ML et al (2018) Rheological analysis of irradiated crosslinkable and scissionable polymers used for medical devices under different radiation conditions. Radiat Phys Chem 144:298–303. https://doi.org/10.1016/j.radphyschem.2017.09.002

    Article  CAS  Google Scholar 

  38. Wang Y, Yang L, Niu Y et al (2011) Rheological and topological characterizations of electron beam irradiation prepared long-chain branched polylactic acid. J Appl Polym Sci 122:1857–1865. https://doi.org/10.1002/app.34276

    Article  CAS  Google Scholar 

  39. Babanalbandi A, Hill DJT, O’Donnell JH et al (1995) An electron spin resonance study on γ-irradiated poly(l-lactic acid) and poly(d, l-lactic acid). Polym Degrad Stab 50:297–304. https://doi.org/10.1016/0141-3910(95)00150-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

To the support of CAPES-CNPq and IPEN/CNEN. LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir—grant agreement n°ANR-11-LABX-0030) and of the PolyNat Carnot Institut (Investissements d’Avenir—grant agreement n°ANR-11-CARN-030-01).

Author information

Authors and Affiliations

Authors

Contributions

F. A. T. Costa contributed to Data curation, Writing, Original draft preparation and Editing. E. C. L. Cardoso contributed to Reviewing and Editing. A. Dufresne: Writing, Reviewing and Editing. D. F. Parra contributed to Writing, Reviewing and Editing, Validation.

Corresponding author

Correspondence to Fernanda Andrade Tigre da Costa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, F.A.T., Cardoso, E.C.L., Dufresne, A. et al. Compatibilization of poly(butylene adipate-co-terephthalate)/polylactic acid blends by gamma radiation. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05428-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05428-1

Keywords

Navigation