Log in

The effect of activated carbon nanoparticles (ACNPs) on characterization and mechanical properties of polyethersulfone (PES) ultrafiltration membranes

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Membrane technologies have developed as one of the main contributors to the resolution of water-related problems. This study seeks to examine the impact of active carbon nanoparticles (ACNPs) on the characterization and mechanical properties of polyethersulfone (PES) ultrafiltration membranes. The PES-AC composites were prepared using the phase inversion technique with a doctor blade by including ACNPs at varied weight percentages (0.01, 0.02, 0.03, 0.04 wt%). Produced membranes were characterized using FTIR, TGA, SEM, and XRD techniques, and the mechanical properties were evaluated using a tensile test, following the guidelines of the ASTM 638M-3 standard, utilizing a uniaxial universal testing machine. SEM images reveal that PES pure membranes consist of a porous bulk layer and dense skin layer. The addition of ACNPs decreased the pore size of the membranes with total thickness varying from 140 to 150 μm. Fourier-transform infrared spectroscopy (FTIR) indicated that with increasing ACNPs concentration, the peak intensities are related to C–C stretching bonds and acidic C–O groups. The XRD analysis showed that with higher ACNPs loading, there are a decrease in the amorphous phase of mixed matrix membranes (MMMs) and the highest intensity (2θ = 12.99°) at 2% ACNPs concentration. The tensile strength of the MMMs increased and reached an ideal value of 3.386 MPa when loaded with 2% ACNPs. Also, the optimum rate of tensile strain with 40% enhancement was achieved with 2% ACNPs compared with the pristine PES membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Xu ZL, Qusay FA (2004) Effect of polyethylene glycol molecular weights and concentrations on polyethersulfone hollow fiber ultrafiltration membranes. J Appl Polym Sci 91(5):3398–3407. https://doi.org/10.1002/app.13580

    Article  CAS  Google Scholar 

  2. Li Y, Cao C, Chung TS, Pramoda KP (2004) Fabrication of dual-layer polyethersulfone PES hollow fiber membranes with an ultrathin dense-selective layer for gas separation. J Membr Sci 245(1):53–60. https://doi.org/10.1016/j.memsci.2004.08.002

    Article  CAS  Google Scholar 

  3. Boussu K, Vandecasteele C, Van der Bruggen B (2006) Study of the characteristics and the performance of self-made nanoporous polyethersulfone membranes. Polymer 47(10):3464–3476. https://doi.org/10.1016/j.polymer.2006.03.048

    Article  CAS  Google Scholar 

  4. Garg VK, Kumar R, Gupta R (2004) Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dyes Pigm 62(1):1–10. https://doi.org/10.1016/j.dyepig.2003.10.016

    Article  CAS  Google Scholar 

  5. Li NN, Fane AG, Ho WW, Matsuura T (2017) Advanced membrane technology and applications. Wiley, Hoboken. Judd S, Jefferson B (2003) Membranes for Industrial Wastewater Recovery and Re-use. Elsevier, Amsterdam

  6. Fu X et al (2008) Effect of surface morphology on membrane fouling by humic acid with the use of cellulose acetate butyrate hollow fiber membranes. J Membr Sci 320(1–2):483–491. https://doi.org/10.1016/j.memsci.2008.04.027

    Article  CAS  Google Scholar 

  7. Acarer S (2023) A review of microplastic removal from water and wastewater by membrane technologies. Water Sci Technol 88(1):199–219. https://doi.org/10.2166/wst.2023.186

    Article  CAS  PubMed  Google Scholar 

  8. **g-Feng L, Zhen-Liang X, Hu Y, Li-Yun Y, Min L (2009) Effet of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 255(9):4725–4732. https://doi.org/10.1016/j.apsusc.2008.07.139

    Article  CAS  Google Scholar 

  9. Gao Y, Haavisto S, Li W, Tang CY, Salmela J, Fane AG (2014) Novel approach to characterizing the growth of a fouling layer during membrane filtration via optical coherence tomography. Environ Sci Technol 48:14273–14281. https://doi.org/10.1021/es503326y

    Article  CAS  PubMed  Google Scholar 

  10. Jermann D, Pronk W, Boller M (2008) Mutual influences between natural organic matter and inorganic particles and their combined effect on ultrafiltration membrane fouling. Environ Sci Technol 42:9129–9136. https://doi.org/10.1021/es800654p

    Article  CAS  PubMed  Google Scholar 

  11. Xueli G, Haizeng W, Jian W, **ng H, Congjie G (2013) Surface-modified PSf UF membrane by UV-assisted graft polymerization of capsaicin derivative moiety for fouling and bacterial resistance. J Membr Sci 445:146–155. https://doi.org/10.1016/j.memsci.2013.05.026

    Article  CAS  Google Scholar 

  12. Li X, Li J, Fang X, Bakzhan K, Wang L, Van der Bruggen B (2016) A synergetic analysis method for antifouling behavior investigation on PES ultrafiltration membrane with self-assembled TiO2 nanoparticles. J Colloid Interface Sci 469:164–176. https://doi.org/10.1016/j.jcis.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  13. Koros W, Zhang C (2017) Materials for next-generation molecularly selective synthetic membranes. Nat Mater 16:289–297. https://doi.org/10.1038/nmat4805

    Article  CAS  PubMed  Google Scholar 

  14. Amiri F, Moghadassi A, Bagheripour E, Parvizian F (2017) Fabrication and characterization of PES-based nanofiltration membrane modified by zeolite nanoparticles for water desalination. J Membr Sci Res 3(1):50–56. https://doi.org/10.22079/jmsr.2017.23349

    Article  Google Scholar 

  15. Ahmed I, Idris A, Khan MS, Chowdhury S, Akhtar J (2014) Effect of acetone on physical properties of PES membrane. Appl Mech Mater 625:545–548. https://doi.org/10.4028/www.scientific.net/AMM.625.545

    Article  Google Scholar 

  16. Frewin DB, Jonsson JR, Davis KG, Beilby AM, Haylock DN, Beal RW, Russell WJ (1987) Effect of microfiltration on the histamine levels in stored human blood. Vox Sang 52(3):191–194. https://doi.org/10.1111/j.1423-0410.1987.tb03025.x

    Article  CAS  PubMed  Google Scholar 

  17. Peng N, Chung TS, Wang KY (2021) Macrovoid evolution and critical factors to form macrovoid-free hollow fiber membranes. Hollow fiber membranes. Elsevier, Amsterdam, pp 141–161. https://doi.org/10.1016/B978-0-12-821876-1.00018-4

    Chapter  Google Scholar 

  18. Zhu L, Wu M, Van der Bruggen B, Lei L, Zhu L (2020) Effect of TiO2 content on the properties of polysulfone nanofiltration membranes modified with a layer of TiO2–graphene oxide. Sep Purif Technol 242:116770. https://doi.org/10.1016/j.seppur.2020.116770

    Article  CAS  Google Scholar 

  19. Mozia S, Grylewicz A, Zgrzebnicki M, Darowna D, Czyżewski A (2019) Investigations on the properties and performance of mixed-matrix polyethersulfone membranes modified with halloysite nanotubes. Polymers 11(4):671. https://doi.org/10.3390/polym11040671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen JN, Ruan HM, Wu LG, Gao CJ (2011) Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment. Chem Eng J 168(3):1272–1278. https://doi.org/10.1016/j.cej.2011.02.039

    Article  CAS  Google Scholar 

  21. Acarer S, Pir İ, Tüfekci M, Erkoҫ T, Öztekin V, Durak SG, Tüfekci N (2023) Characterisation and modelling the mechanics of cellulose nanofibril added polyethersulfone ultrafiltration membranes. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e13086

    Article  PubMed  PubMed Central  Google Scholar 

  22. Daraei P, Ghaemi N, Sadeghi Ghari H (2017) An ultra-antifouling polyethersulfone membrane embedded with cellulose nanocrystals for improved dye and salt removal from water. Cellulose 24(2):915–929. https://doi.org/10.1007/s10570-016-1135-3

    Article  CAS  Google Scholar 

  23. Tariq A, Rehan ZA, Akram S, Rashid A, Nawab Y (2020) Operational and environmental challenges of nanocomposite membranes. Nanocomposite membranes for water and gas separation. Elsevier, Amsterdam, pp 475–492. https://doi.org/10.1016/B978-0-12-816710-6.00019-5

    Chapter  Google Scholar 

  24. Celik E, Park H, Choi H, Choi H (2011) Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res 45(1):274–282. https://doi.org/10.1016/j.watres.2010.07.060

    Article  CAS  PubMed  Google Scholar 

  25. Nasrollahi N, Vatanpour V, Aber S, Mahmoodi NM (2018) Preparation and characterization of a novel polyethersulfone PES ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Sep Purif Technol 192:369–382. https://doi.org/10.1016/j.seppur.2017.10.034

    Article  CAS  Google Scholar 

  26. Ti**k MSL, Kooman J, Wester M, Sun J, Saiful S, Joles JA, Stamatialis DF (2014) Mixed matrix membranes: a new asset for blood purification therapies. Blood Purif 37(1):1–3. https://doi.org/10.1159/000356226

    Article  CAS  PubMed  Google Scholar 

  27. Huang L, Zhang M, Li C, Shi G (2015) Graphene-based membranes for molecular separation. J Phys Chem Lett 6(14):2806–2815. https://doi.org/10.1021/acs.jpclett.5b00914

    Article  CAS  PubMed  Google Scholar 

  28. Bhave PP, Yeleswarapu D (2020) Removal of indoor air pollutants using activated carbon—a review. In: Sivasubramanian V, Subramanian S (eds) Global challenges in energy and environment. Lecture notes on multidisciplinary industrial engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-9213-9_7

    Chapter  Google Scholar 

  29. Khalil AM, Schäfer AI (2021) RETRACTED: cross-linked β-cyclodextrin nanofiber composite membrane for steroid hormone micropollutant removal from water.‏ https://doi.org/10.1016/j.memsci.2020.118228

  30. Brown I (2020) Challenges in delivering climate change policy through land use targets for afforestation and peatland restoration. Environ Sci Policy 107:36–45. https://doi.org/10.1016/j.envsci.2020.02.013

    Article  Google Scholar 

  31. Hosseini SM, Amini SH, Khodabakhshi AR, Bagheripour E, Van der Bruggen B (2018) Activated carbon nanoparticles entrapped mixed matrix polyethersulfone-based nanofiltration membrane for sulfate and copper removal from water. J Taiwan Inst Chem Eng 82:169–178. https://doi.org/10.1016/j.jtice.2017.11.017

    Article  CAS  Google Scholar 

  32. Dos Santos PR, Daniel LA (2020) A review: organic matter and ammonia removal by biological activated carbon filtration for water and wastewater treatment. Int J Environ Sci Technol 17(1):591–606. https://doi.org/10.1007/s13762-019-02567-1

    Article  CAS  Google Scholar 

  33. Rahimpour A, Jahanshahi M, Khalili S, Mollahosseini A, Zirepour A, Rajaeian B (2012) Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone PES membranes. Desalination 286:99–107. https://doi.org/10.1016/j.desal.2011.10.039

    Article  CAS  Google Scholar 

  34. de Kergommeaux A, Fiore A, Faure-Vincent J, Pron A, Reiss P (2013) Colloidal CuInSe2 nanocrystals are thin films of low surface roughness. Adv Nat Sci Nanosci Nanotechnol 4(1):015004. https://doi.org/10.1088/2043-6262/4/1/015004

    Article  CAS  Google Scholar 

  35. Isanejad M, Azizi N, Mohammadi T (2017) Pebax membrane for CO2/CH4 separation: effects of various solvents on morphology and performance. J Appl Polym Sci 134(9):44531. https://doi.org/10.1002/app.44531

    Article  CAS  Google Scholar 

  36. Bhargava R, Wang SQ, Koenig J (2003) FTIR microspectroscopy of polymeric systems. Liquid chromatography/FTIR microspectroscopy/microwave assisted synthesis. Advances in polymer science, vol 163. Springer, Berlin. https://doi.org/10.1007/b11052

    Chapter  Google Scholar 

  37. Ali AS (2020) Application of nanomaterials in environmental improvement. Nanotechnol Environ‏

  38. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress, and problems. J Photochem Photobiol, C 9(1):1–12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003

    Article  CAS  Google Scholar 

  39. Aboamera NM, Mohamed A, Salama A, Osman TA, Khattab A (2019) Characterization and mechanical properties of electrospun cellulose acetate/graphene oxide composite nanofibers. Mech Adv Mater Struct 26(9):765–769. https://doi.org/10.1080/15376494.2017.1410914

    Article  CAS  Google Scholar 

  40. Hinková A, Bubník Z, Pour V, Henke S, Kadlec P (2005) Application of cross-flow ultrafiltration on inorganic membranes in purification of food materials. Czech J Food Sci 23:103–110

    Article  Google Scholar 

  41. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10(3):751–758. https://doi.org/10.1021/nl904286r

    Article  CAS  PubMed  Google Scholar 

  42. Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448. https://doi.org/10.1016/j.watres.2015.09.045

    Article  CAS  PubMed  Google Scholar 

  43. Fu CC, Hsiao YS, Ke JW, Syu WL, Liu TY, Liu SH, Juang RS (2020) Adsorptive removal of p-cresol and creatinine from simulated serum using porous polyethersulfone mixed-matrix membranes. Sep Purif Technol 245:116884. https://doi.org/10.1016/j.seppur.2020.116884

    Article  CAS  Google Scholar 

  44. Hosseini SM, Madani SS, Khodabakhshi AR (2010) Preparation and characterization of PC/SBR heterogeneous cation exchange membrane filled with carbon nano-tubes. J Membr Sci 362(1–2):550–559. https://doi.org/10.1016/j.memsci.2010.07.015

    Article  CAS  Google Scholar 

  45. Mohamed A, Yousef S, Abdelnaby MA (2021) Microstructure and modeling of uniaxial mechanical properties of Polyethersulfone nanocomposite ultrafiltration membranes. Int J Mech Sci 204:106568. https://doi.org/10.1016/j.ijmecsci.2021.106568

    Article  Google Scholar 

  46. He Z, Meng M, Yan L, Zhu W, Sun F, Yan Y, Liu S (2015) Fabrication of new cellulose acetate blend imprinted membrane assisted with ionic liquid ([BMIM] Cl) for selective adsorption of salicylic acid from industrial wastewater. Sep Purif Technol 145:63–74. https://doi.org/10.1016/j.seppur.2015.03.005

    Article  CAS  Google Scholar 

  47. Esfahani MR, Aktij SA, Dabaghian Z, Firouzjaei MD, Rahimpour A, Eke J, Koutahzadeh N (2019) Nanocomposite membranes for water separation and purification: fabrication, modification, and applications. Sep Purif Technol 213:465–499. https://doi.org/10.1016/j.seppur.2018.12.050

    Article  CAS  Google Scholar 

  48. Acarer S (2022) Effect of different solvents, pore-forming agent and solubility parameter differences on the properties of PES ultrafiltration membrane. Sak Univ J Sci 26(6):1196–1208. https://doi.org/10.16984/saufenbilder.1135285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.E.M. Mahmoud: research conceptualization, methodology, preparation, analysis, discussion, and writing. E.E.D. El-kashif: analysis, interpretation, experiment, and editing. M. Saood: idea generation, methodology, visualization, review, and editing. S.A. Abd El Rahman: conceptualization, methodology, writing, and editing. All authors have read and approved the publication of this version of the manuscript.

Corresponding author

Correspondence to Modar Saood.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasheesh, M., El-Kashif, E.F., Mohamed, A. et al. The effect of activated carbon nanoparticles (ACNPs) on characterization and mechanical properties of polyethersulfone (PES) ultrafiltration membranes. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05399-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05399-3

Keywords

Navigation