Log in

Infrared spectra of the main optical properties of poly(methyl methacrylate) thin films

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study aimed to determine the infrared (IR) spectra of the main optical properties of poly(methyl methacrylate) (PMMA). This is a simple and original method for obtaining spectra of the main optical properties from the reflection–absorption spectrum. Infrared reflection spectra of the main optical properties of PMMA were obtained from the complex relative permittivity using the Drude–Lorentz model for permittivity. Classical dispersion analysis of the reflection–absorption spectrum of poly(methyl methacrylate) films cast on a metal mirror was performed. The method is based on an iterative least squares fitting process of the experimental reflection–absorption spectrum of the polymer with the corresponding theoretical spectrum obtained from the complex permittivity Drude–Lorentz model. This approach is original for obtaining the relative permittivity and subsequently obtaining the main optical properties of the polymer film: complex electric modulus, energy loss function, optical constants, absorption coefficient, penetration depth, dissipation factor, and complex optical conductivity. In addition to the findings of other articles, some optical properties of PMMA films have been presented, which may be useful for studying PMMA-based composites or copolymers. Please confirm if the author names are presented accurately and in the correct sequence Author 1 Given name: [Maria Laura ] Last name [Strugariu]. Author 2 Given name: Sorina Gabriela Last name [Șerban] Author 3 Given name: [Antonia Maria ]Last name :[Berdie] Also, kindly confirm the details in the metadata are correct.Yes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Allara D, Stapleton J (2013) Methods of IR spectroscopy for surfaces and thin films. In: Bracco G, Holst B (eds) Surface science techniques. Springer, Berlin Heidelberg, pp 59–98

    Chapter  Google Scholar 

  2. Fringeli UP (2000) ATR and reflectance IR spectroscopy. In: Lindon JC, Tranter GE, Holmes JL (eds) Encyclopedia of spectroscopy and spectrometry. Academic Press, London, pp 58–75

    Google Scholar 

  3. Yamamoto K, Ishida H (1994) Optical theory applied to infrared spectroscopy. Vib Spectrosc 8:1–36. https://doi.org/10.1016/0924-2031(94)00022-9

    Article  CAS  Google Scholar 

  4. Jitian S, Bratu I (2022) Changing the optical properties of poly(methyl methacrylate) superficial films during UV irradiation. Spectrosc Lett 55:199–211. https://doi.org/10.1080/00387010.2022.2046105

    Article  CAS  Google Scholar 

  5. Jitian S, Bratu I (2012) Determination of optical constants of polymethyl methacrylate films from ir reflection-absorption spectra. AIP Conf Proc 1425:26–29. https://doi.org/10.1063/1.3681958

    Article  CAS  Google Scholar 

  6. Kuzmenko AB (2005) Kramers–Kronig constrained variational analysis of optical spectra. Rev Sci Instrum 76:083108. https://doi.org/10.1063/1.1979470

    Article  CAS  Google Scholar 

  7. Berdie AD, Berdie AA, Jitian S (2021) The degradation of thin poly(methyl methacrylate) films subjected to different destructive treatments. J Polym Res-Taiwan 28:60. https://doi.org/10.1007/s10965-020-02390-0

    Article  CAS  Google Scholar 

  8. Alrooqi A, Al-Amshany ZM, Al-Harbi LM, Altalhi TA, Refat MS, Hassanien AM, Atta AA (2022) Impact of charge transfer complex on the dielectric relaxation processes in poly(methyl methacrylate) Polymer. Molecules 27:1993. https://doi.org/10.3390/molecules27061993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vassilikou-Dova A, Kalogeras IM (2009) Dielectric Analysis. In: Menczel JD, Bruce Prime R (eds) Thermal analysis of polymers fundamentals and application. Wiley and sons, New Jersey, pp 497–614

    Chapter  Google Scholar 

  10. Kuzmenko AB (2018) Guide to RefFIT: Software to fit optical spectra http://optics.unige.ch/alexey/reffit.html. Accessed 3 Dec 2023

  11. El-Nahass MM, Soliman HS, El-Denglawey A (2016) Absorption edge shift, optical conductivity, and energy loss function of nano thermal-evaporated N-type anatase TiO2 films. Appl Phys A-Matter 122:775. https://doi.org/10.1007/s00339-016-0302-6

    Article  CAS  Google Scholar 

  12. El-Denglawey A, Makhlouf MM, Dongol M, El-Nahass MM (2015) The effect of long term aging on the structural and optical properties of nano metallo-tetraphenylporphine films. J Mater Sci-Mater El 26:5603–5609. https://doi.org/10.1007/s10854-015-3017-0

    Article  CAS  Google Scholar 

  13. El-Denglawey A (2018) Illumination effect on the structural and optical properties of nano meso nickel(II) tetraphenyl-21H, 23H-porphyrin films induces new two hours photo bleached optical sensor. J Lumin 194:381–386. https://doi.org/10.1016/j.jlumin.2017.10.070

    Article  CAS  Google Scholar 

  14. Montecchi A, Mittiga A, Malerba C, Menchini F (2023) KSEMAW: an open source software for the analysis of spectrophotometric, ellipsometric and photothermal deflection spectroscopy measurements. Open Research Europe 1:95. https://doi.org/10.12688/openreseurope.13842.1

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang HT, He R, Peng L, Yang YT, Sun J, Zhang YS et al (2023) Interpretation of reflection and colorimetry characteristics of indium-particle films by means of ellipsometric modeling. Nanomaterials 13:383. https://doi.org/10.3390/nano13030383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. El-Denglawey A, Dongol M, El-Nahass MM (2010) Photoinduced absorption edge shift of As20Se60Tl20 films. J Lumin 130:801–804. https://doi.org/10.1016/j.jlumin.2009.11.036

    Article  CAS  Google Scholar 

  17. El-Denglawey A, Alburaih HA, Adam MS, Dongol M, El-Nahass MM, MM et al (2021) Dependence of new environmental nano organic semiconductor nickel-(II)-tetraphenyl-21H, 23H-porphyrin films on substrate type for energy storage applications. Int J Environ Sci Te 18:393–400. https://doi.org/10.1007/s13762-020-02829-3

    Article  CAS  Google Scholar 

  18. Dongol M, Abou Zied MG, Gamal A, El-Denglawey A (2004) The effects of composition and heat treatment on the structural and optical properties of Ge15Te85xCux thin films. Physica B 353:169–175. https://doi.org/10.1016/j.physb.2004.09.092

    Article  CAS  Google Scholar 

  19. Dongol M, El-Denglawey A, Abd El Sadek MS, Yahia IS (2015) Thermal annealing effect on the structural and the optical properties of Nano CdTe films. Optik 126:1352–1357. https://doi.org/10.1016/j.ijleo.2015.04.0480030-4026

    Article  CAS  Google Scholar 

  20. Al-Harbi FF, El-Nahass MM, Soliman HS, El-Denglawey A (2020) Nano structure and optical properties of two hours thermal aged AsAgS films deposited on quartz substrate: new time factor. Opt Quant Electron 52:368. https://doi.org/10.1007/s11082-020-02476-5

    Article  CAS  Google Scholar 

  21. Aras G, Orhan E, Selçuk AB, Ocak SB, Ertuğrul M (2015) Dielectric properties of Al/poly(methyl methacrylate)(PMMA)/p-Si structures at temperatures below 300 K. Procd Soc Behv 195:1740–1745. https://doi.org/10.1016/j.sbspro.2015.06.295

    Article  Google Scholar 

  22. Frayssinous C, Fortin V, Bérubé JP, Fraser A, Vallée R (2018) Resonant polymer ablation using a compact 3.44 μm fiber laser. J Mater Process Tech 252:813–820. https://doi.org/10.1016/j.jmatprotec.2017.10.051

    Article  CAS  Google Scholar 

  23. El-Denglawey A, Alburaih HA, Mostafa MM, Adam MSS, Makhlouf MM (2021) Blueshifted dielectric properties and optical conductivity of new nanoscale nickel-(II)-tetraphenyl-21H, 23H-porphyrin films as a function of UV illumination for energy storage applications. Opt Quant Electron 53:343. https://doi.org/10.1007/s11082-021-02972-2

    Article  CAS  Google Scholar 

  24. Dresselhaus MS (2001) Solid state physics. Part II Optical properties of solids. Lecture Notes Part 2. http://web.mit.edu/afs/athena/course/6/6.732/www/opt.pdf. Accessed 3 Dec.2023

  25. Rashidian M, Dorranian D (2014) Low-intensity UV effects on optical constants of PMMA film. J Theor Appl Phys 8:121. https://doi.org/10.1007/s40094-014-0121-0

    Article  Google Scholar 

  26. Bhavsar VB, Tripathi D (2016) Study of refractive index dispersion and optical conductivity of PPy doped PVC films. Indian J Pure Ap Phy 54:105–110

    Google Scholar 

  27. Kumar N, Sengwa RJ, Dhatarwal P, Saraswat M (2022) Effectively polymer composition controllable optical properties of PVDF/PMMA blend films for advances in flexible device technologies. Indian J Eng Mater S 29:169–180

    CAS  Google Scholar 

  28. Aly KA (2022) Comment on the relationship between electrical and optical conductivity used in several recent papers published in the journal of materials science: materials in electronics. J Mater Sci-Mater El 33:2889–2898. https://doi.org/10.1007/s10854-021-07496-9

    Article  CAS  Google Scholar 

  29. Evchuk IY, Musii RI, Makitra RG, Pristanskii RE (2005) Solubility of polymethyl methacrylate in organic solvents. Russ J Appl Chem 78:1576–1580. https://doi.org/10.1007/s11167-005-0564-9

    Article  CAS  Google Scholar 

  30. Hossein Esfahani Z, Ghanipour M, Dorranian D (2014) Effect of dye concentration on the optical properties of red-BS dye-doped PVA film. J Theor Appl Phys 8:117–121. https://doi.org/10.1007/s40094-014-0139-3

    Article  Google Scholar 

  31. Goktas A, Tumbul A, Aba Z, Kilic A, Aslan F (2020) Enhancing crystalline/optical quality, and photoluminescence properties of the Na and Sn substituted ZnS thin films for optoelectronic and solar cell applications; a comparative study. Opt Mater 107:110073. https://doi.org/10.1016/j.optmat.2020.110073

    Article  CAS  Google Scholar 

  32. Yang H, Ren Q, Zhang G, Chow YT, Chan HP, Chu PL (2005) Preparation and optical constants of the nano-crystal and polymer composite Bi4Ti3O12/PMMA thin films. Opt Laser Technol 37:259–264. https://doi.org/10.1016/j.optlastec.2004.04.004

    Article  CAS  Google Scholar 

  33. Goktas A, Tumbul A, Aba Z, Durgun M (2019) Mg do** levels and annealing temperature induced structural, optical and electrical properties of highly c-axis oriented ZnO: Mg thin films and Al/ZnO:Mg/p-Si/Al heterojunction diode. Thin Solid Films 680:20–30. https://doi.org/10.1016/j.tsf.2019.04.024

    Article  CAS  Google Scholar 

  34. Tumbul A, Göktaş A, Zarbali MZ, Aslan F (2018) Structural, morphological and optical properties of the vacuum-free processed CZTS thin film absorbers. Mater Res Express 5:066408. https://doi.org/10.1088/2053-1591/aac80e

    Article  CAS  Google Scholar 

  35. Goktas A, Tumbul A, Aslan F (2019) A new approach to growth of chemically depositable different ZnS nanostructures. J Sol-Gel Sci Techn 90:487–497. https://doi.org/10.1007/s10971-019-04990-9

    Article  CAS  Google Scholar 

  36. Șerban SG, Strugariu LM, Jitian S (2023) The influence of solvents on the appearance of the absorption bands of the polystyrene films deposited from solutions on metal mirrors. Opt Appl 53:5–19. https://doi.org/10.37190/oa230101

    Article  CAS  Google Scholar 

Download references

Funding

The authors received no support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors whose names appear in the submission made substantial contributions to the conception or design of the work. Conceptualization done by MLS; methodology done by SJ; formal analysis and investigation done by SJ; writing—original draft preparation done by AMB; writing—review and editing done by SGȘ. All the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Simion Jitian.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strugariu, M.L., Șerban, S.G., Berdie, A.M. et al. Infrared spectra of the main optical properties of poly(methyl methacrylate) thin films. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05242-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05242-9

Keywords

Navigation