Log in

Optimization of silicone-modified acrylate nanoemulsion preparation process by response surface methodology

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nanoemulsions are colloidal dispersion systems that consist of oil, water, emulsifier, and co-emulsifier. They are isotropic and thermodynamically stable and possess either transparent or translucent properties. In this paper, a one-way test was employed to determine the experimental ranges of temperature, emulsifier dosage, and silicone monomer dosage for the polymerization reaction of silicone-modified acrylate nanoemulsions. The Box–Behnken central combination experimental design principle was utilized for response surface optimization tests. The results revealed that the optimal experimental conditions were found to be a reaction temperature of 80 °C, an emulsifier dosage of 3.7%, and an organosilicon content of 5.1%. Experimental verification demonstrated a conversion rate of 95.49% for acrylate nanoemulsion, with a gelation rate of 0.067%, aligning closely with the extrapolated results from the model. These findings highlight the efficacy of the interfacial response surface method in optimizing the preparation process of silicone-modified acrylate nanoemulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fang C, Huang X, Ge T, Li Y, Cao Y, Zhu X, Dong X (2020) Effect of dodecafluoroheptyl methacrylate (DFMA) on the comprehensive properties of acrylate emulsion pressure sensitive adhesives. Int J Adhes Adhes 101:102634. https://doi.org/10.1016/j.ijadhadh.2020.102634

    Article  CAS  Google Scholar 

  2. Wang R-M, Wang J-F, Wang X-W, He Y-F, Zhu Y-F, Jiang M-L (2011) Preparation of acrylate-based copolymer emulsion and its humidity controlling mechanism in interior wall coatings. Prog Org Coat 71(4):369–375. https://doi.org/10.1016/j.porgcoat.2011.04.007

    Article  CAS  Google Scholar 

  3. Zhang H, Yang H, Lu J, Lang J, Gao H (2019) Study on Stability and stability mechanism of styrene-acrylic emulsion prepared using nanocellulose modified with long-chain fatty acids. Polymers 11(7):1131. https://doi.org/10.3390/polym11071131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu J, Lang J, Lan P, Yang H, Yang J, Wu X, Zhang H (2020) Evalution of surface activity of hydrophobic modified nanocrystalline cellulose. Cellulose 27(16):9299–9309. https://doi.org/10.1007/s10570-020-03415-z

    Article  CAS  Google Scholar 

  5. Su W, Zhang H, Yang S, Xu Y, Zhang C, Cheng X, Zhou C (2022) One-pot synthesis of multifunctional silicone elastomer: ring-opening copolymerization of D4 and Dual-D4Vi. Eur Polym J 175:111382. https://doi.org/10.1016/j.eurpolymj.2022.111382

    Article  CAS  Google Scholar 

  6. Fang C, **g Y, Lin Z (2017) The application research of environment-friendly reactive surfactants in acrylate emulsion pressure sensitive adhesives. Int J Adhes Adhes 73:1–7. https://doi.org/10.1016/j.ijadhadh.2016.11.002

    Article  CAS  Google Scholar 

  7. Van Thi Thuy N, Gaspillo P, Thanh HGT, Nhi NHT, Long HN, Tri N et al (2022) Cellulose from the banana stem: optimization of extraction by response surface methodology (RSM) and charaterization. Heliyon 8(12):e11845. https://doi.org/10.1016/j.heliyon.2022.e11845

    Article  CAS  Google Scholar 

  8. Sami S, Sadrameli SM, Etesami N (2018) Thermal properties optimization of microencapsulated a renewable and non-toxic phase change material with a polystyrene shell for thermal energy storage systems. Appl Therm Eng 130:1416–1424. https://doi.org/10.1016/j.applthermaleng.2017.11.119

    Article  CAS  Google Scholar 

  9. Jiang X, Liao K, **e D, **e Y, Zhang X (2017) Optimization of microencapsulation of silane coupling agent by spray drying using response surface methodology. Int J Polym Mater Polym Biomater 66(17):891–899. https://doi.org/10.1080/00914037.2017.1291508

    Article  CAS  Google Scholar 

  10. Huo J, Yu B, Peng Z, Wu Z, Zhang L (2021) Preparation, characterization and optimization of micro-encapsulated phase change materials used for thermal storage and temperature regulation depends on response surface methodology. J Energy Storage 40:102789. https://doi.org/10.1016/j.est.2021.102789

    Article  Google Scholar 

  11. Li Y, Wang Y, Wang Q, Tang L, Yuan L, Wang G, Zhang R (2018) Optimization the synthesis parameters of gas-wetting alteration agent and evaluation its performance. Colloids Surf A 558:438–445. https://doi.org/10.1016/j.colsurfa.2018.08.079

    Article  CAS  Google Scholar 

  12. Pakdel AS, Rezaei Behbahani M, Saeb MR, Khonakdar HA, Abedini H, Moghri M (2015) Evolution of vinyl chloride conversion below critical micelle concentration: a response surface analysis. J Vinyl Add Tech 21(3):157–165. https://doi.org/10.1002/vnl.21352

    Article  CAS  Google Scholar 

  13. Banerjee A, Ray SK (2018) PVA modified filled copolymer membranes for pervaporative dehydration of acetic acid-systematic optimization of synthesis and process parameters with response surface methodology. J Membr Sci 549:84–100. https://doi.org/10.1016/j.memsci.2017.11.056

    Article  CAS  Google Scholar 

  14. Brahima S, Boztepe C, Kunkul A, Yuceer M (2017) Modeling of drug release behavior of pH and temperature sensitive poly(NIPAAm- co -AAc) IPN hydrogels using response surface methodology and artificial neural networks. Mater Sci Eng, C 75:425–432. https://doi.org/10.1016/j.msec.2017.02.081

    Article  CAS  Google Scholar 

  15. Peng W, Zhang X, Jia X, Xu X, Wang Y, Zhang Y (2022) Synthesis, characterization and demulsification performance of polymethylamyldiallylammonium chloride. J Macromol Sci Part B 61(3):309–323. https://doi.org/10.1080/00222348.2021.2005886

    Article  CAS  Google Scholar 

  16. Seid Mohammadi M, Sahraei E, Bayati B (2020) Synthesis optimization and characterization of high molecular weight polymeric nanoparticles as EOR agent for harsh condition reservoirs. J Polym Res 27(2):41. https://doi.org/10.1007/s10965-020-2017-9

    Article  CAS  Google Scholar 

  17. Nguyen TH, Nguyen NT, Nguyen TTP, Doan NT, Tran LAT, Nguyen LPD, Bui TT (2022) Optimizing the conditions of cationic polyacrylamide inverse emulsion synthesis reaction to obtain high–molecular–weight polymers. Polymers 14(14):2866. https://doi.org/10.3390/polym14142866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu GY (2019) Synthesis and performance study of organosilicon modified acrylate emulsions. Chem Eng Equip 12:17–19. https://doi.org/10.19566/j.cnki.cn35-1285/tq.2019.12.007

    Article  Google Scholar 

  19. Liu YX, Meng S, Lv YH (2011) Study of vinyltriethoxysilane modified acrylic emulsions. Shanghai Chem Ind 36(4):10–13. https://doi.org/10.16759/j.cnki.issn.1004-017x.2011.04.015

    Article  CAS  Google Scholar 

  20. Dang HR (2016) Synthesis and application of multifunctional fluorinated acrylate-based copolymers. **'an University of Engineering. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkfRP2_0Pu6EiJ0xua_6bqBpZF9Ib6x96TyvipM0RuqK093mGOPvAAyVr_tgFng9Z&uniplatform=NZKPT

  21. Song JH (2022) Study on the performance of polymerized benzene propylene emulsion with compound cationic emulsifier. Guangdong Chem Ind 49(16):1–3

    Google Scholar 

  22. Peng CC, **ng JF, Yan JF et al (2018) Effect of emulsifiers on the performance of acrylic emulsions. Packag Eng 39(17):66–70. https://doi.org/10.19554/j.cnki.1001-3563.2018.17.011

    Article  CAS  Google Scholar 

  23. Feng ZH, Hu WX, Wang Y et al (2018) Preparation and properties of shell/core type polyacrylate emulsions. Mater Protect 51(5):82–85102. https://doi.org/10.16577/j.cnki.42-1215/tb.2018.05.017

    Article  Google Scholar 

  24. Li L, Zhang S, He Q et al (2015) Application of response surface methodology in experimental design and optimization. Lab Res Explor 34(8):41–45

    CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Shandong Provincial Natural Science Foundation of China (Grant No. ZR2022MB135), Open Fund of Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, and the Graduate Student Independent Research and Innovation Program of Qingdao University of Science and Technology (Grant No. S2023KY039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J.X., Xu, B.M., Wang, N. et al. Optimization of silicone-modified acrylate nanoemulsion preparation process by response surface methodology. Polym. Bull. 81, 8195–8214 (2024). https://doi.org/10.1007/s00289-023-05101-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05101-z

Keywords

Navigation