Log in

Novel low-cost green method for production bacterial cellulose

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the industrial application of bacterial cellulose (BC), the yield becomes a crucial factor because it drives the selling price of BC. A Box–Behnken experimental design with three components and three levels was employed to create seventeen samples. A response surface method was then used to optimize the BC yield from the most relevant parameters, including incubation temperature, medium shaking intensity, and nitrogen supply pH. Fourier transform infrared (FTIR) analysis proved that BC was pure. By analyzing BC morphology using scanning electron microscopy (SEM), rod-like microfibrils with an average diameter of 6.5 were revealed. X-ray diffraction (XRD) tested the crystalline size and crystallinity and found 4.7 nm and 69%, respectively. Thermal transition and stability were assessed using a differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TGA). For the manufacture of BC composite hydrogel, a chemical test method was used to determine the solubility of BC. This study aimed to identify the ideal circumstances for using leftover sweet lime pulp for biomedical applications to produce reasonably priced and effective BC. At 28.87 °C, 125.91 rpm shaking frequency, and 5.65 pH, a sweet lime pulp waste medium produced the highest yield of BC, three times greater than the yield in a Hestrin–Schramm medium under static circumstances.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The raw data and all materials related to this research work are available with authors.

References

  1. Abdel-Aziz MM, Elella MHA, Mohamed RR (2020) Green synthesis of quaternized chitosan/silver nanocomposites for targeting mycobacterium tuberculosis and lung carcinoma cells (A-549). Int J Biol Macromol 142:244–253

    Article  CAS  PubMed  Google Scholar 

  2. Elella MHA, Goda ES, Abdallah HM, Shalan AE, Gamal H, Yoon KR (2021) Innovative bactericidal adsorbents containing modified xanthan gum/montmorillonite nanocomposites for wastewater treatment. Int J Biol Macromol 167:1113–1125

    Article  PubMed  Google Scholar 

  3. Elella MA, Abdel-Aziz MM, Abd El-Ghany NA (2021) Synthesis of a high-performance antimicrobial o-quaternized alginate—a promising potential antimicrobial agent. Cellul Chem Technol Synth 55:75–86

    Article  Google Scholar 

  4. Elgamal AM, Elella MHA, Saad GR, Abd El-Ghany NA (2022) Synthesis, characterization and swelling behavior of high-performance antimicrobial biocompatible copolymer based on carboxymethyl xanthan. Mater Today Commun 33:104209

    Article  CAS  Google Scholar 

  5. Abu Elella MH, Abdallah HM, Gamal H, Moustafa EB, Goda ES (2022) Rational design of biocompatible IPNs hydrogels containing carboxymethyl starch and trimethyl chitosan chloride with high antibacterial activity. Cellulose 29(13):7317–7330

    Article  CAS  Google Scholar 

  6. Elella MHA, Shalan AE, Sabaa MW, Mohamed RR (2022) One-pot green synthesis of antimicrobial chitosan derivative nanocomposites to control foodborne pathogens. RSC Adv 12(2):1095–1104

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8

    Article  CAS  Google Scholar 

  8. Schlufter K, Schmauder HP, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun 27(19):1670–1676

    Article  CAS  Google Scholar 

  9. Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545

    Article  CAS  Google Scholar 

  10. Barud H, Ribeiro C, Crespi M, Martines M, Dexpert-Ghys J, Marques R, Ribeiro S (2007) Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim 87(3):815–818

    Article  CAS  Google Scholar 

  11. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  12. Stumpf TR, Yang X, Zhang J, Cao X (2018) In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater Sci Eng C 82:372–383

    Article  CAS  Google Scholar 

  13. Hestrin S, Schramm MJBJ (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107(2):576–583

    Article  CAS  PubMed  Google Scholar 

  15. Du R, Wang Y, Zhao F, Qiao X, Song Q, Li S, Zhou Z (2020) Production, optimization and partial characterization of bacterial cellulose from Gluconacetobacter xylinus TJU-D2. Waste Biomass Valor 11(5):1681–1690

    Article  CAS  Google Scholar 

  16. Keshk SMAS, Sameshima K (2005) Evaluation of different carbon sources for bacterial cellulose production. Afr J Biotechnol 4(6):478–482

    CAS  Google Scholar 

  17. Revin V, Liyaskina E, Nazarkina M, Bogatyreva A, Shchankin M (2018) Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz J Microbiol 49:151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu M, Li S, **e Y, Jia S, Hou Y, Zou Y, Zhong C (2018) Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Appl Microbiol Biotechnol 102(3):1155–1165

    Article  CAS  PubMed  Google Scholar 

  19. Gullo M, La China S, Falcone PM, Giudici P (2018) Biotechnological production of cellulose by acetic acid bacteria: current state and perspectives. Appl Microbiol Biotechnol 102(16):6885–6898

    Article  CAS  PubMed  Google Scholar 

  20. Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stab 59(1–3):93–99

    Article  CAS  Google Scholar 

  21. Hungund BS, Gupta SG (2010) Factors affecting production of cellulose from Gluconacetobacter xylinus. Asian J Microbiol Biotechnol Environ Sci 12(3):517–522

    CAS  Google Scholar 

  22. Embuscado ME, Marks JS, Bemiller JN (1994) Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocoll 8(5):407–418

    Article  CAS  Google Scholar 

  23. Jagannath A, Kalaiselvan A, Manjunatha SS, Raju PS, Bawa AS (2008) The effect of pH, sucrose and ammonium sulphate concentrations on the production of bacterial cellulose (Nata-de-coco) by Acetobacter xylinum. World J Microbiol Biotechnol 24(11):2593

    Article  CAS  Google Scholar 

  24. Fernandes IDAA, Pedro AC, Ribeiro VR, Bortolini DG, Ozaki MSC, Maciel GM, Haminiuk CWI (2020) Bacterial cellulose: from production optimization to new applications. Int J Biol Macromol 164:2598–2611

    Article  CAS  PubMed  Google Scholar 

  25. Lotfiman S, Awang Biak DR, Ti TB, Kamarudin S, Nikbin S (2018) Influence of date syrup as a carbon source on bacterial cellulose production by Acetobacter xylinum 0416. Adv Polym Technol 37(4):1085–1091

    Article  CAS  Google Scholar 

  26. Raiszadeh-Jahromi Y, Rezazadeh-Bari M, Almasi H, Amiri S (2020) Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design. J Food Sci Technol 57(7):2524–2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tunga R, Banerjee R, Bhattacharyya BC (1998) Optimizing some factors affecting protease production under solid state fermentation. Bioproc Eng 19(3):187–190

    Article  CAS  Google Scholar 

  28. Son HJ, Heo MS, Kim YG, Lee SJ (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp.A9 in shaking cultures. Biotechnol Appl Biochem 33(1):1–5

    Article  CAS  PubMed  Google Scholar 

  29. Qi GX, Luo MT, Huang C, Guo HJ, Chen XF, **ong L, Chen XD (2017) Comparison of bacterial cellulose production by Gluconacetobacter xylinus on bagasse acid and enzymatic hydrolysates. J Appl Polym Sci 134(28):45066

    Article  Google Scholar 

  30. Urbina L, Hernández-Arriaga AM, Eceiza A, Gabilondo N, Corcuera MA, Prieto MA, Retegi A (2017) By-products of the cider production: an alternative source of nutrients to produce bacterial cellulose. Cellul 24:2071–2082

    Article  CAS  Google Scholar 

  31. Machado RT, Meneguin AB, Sábio RM, Franco DF, Antonio SG, Gutierrez J, Barud HS (2018) Komagataeibacter rhaeticus grown in sugarcane molasses-supplemented culture medium as a strategy for enhancing bacterial cellulose production. Ind Crops Prod 122:637–646

    Article  CAS  Google Scholar 

  32. Molina-Ramírez C, Castro C, Zuluaga R, Gañán P (2018) Physical characterization of bacterial cellulose produced by Komagataeibacter medellinensis using food supply chain waste and agricultural by-products as alternative low-cost feedstocks. J Polym Environ 26:830–837

    Article  Google Scholar 

  33. Abdelraof M, Hasanin MS, El-Saied H (2019) Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydr Polym 211:75–83

    Article  CAS  PubMed  Google Scholar 

  34. Ye J, Zheng S, Zhang Z, Yang F, Ma K, Feng Y, Yang X (2019) Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresour Technol 274:518–524

    Article  CAS  PubMed  Google Scholar 

  35. Skiba EA, Budaeva VV, Ovchinnikova EV, Gladysheva EK, Kashcheyeva EI, Pavlov IN, Sakovich GV (2020) A technology for pilot production of bacterial cellulose from oat hulls. J Chem Eng 383:123128

    Article  CAS  Google Scholar 

  36. Souza EF, Furtado MR, Carvalho CW, Freitas-Silva O, Gottschalk LM (2020) Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean molasses. Int J Biol Macromol 146:285–289

    Article  CAS  PubMed  Google Scholar 

  37. Li ZY, Azi F, Ge ZW, Liu YF, Yin XT, Dong MS (2021) Bio-conversion of kitchen waste into bacterial cellulose using a new multiple carbon utilizing Komagataeibacter rhaeticus: fermentation profiles and genome-wide analysis. Int J Biol Macromol 191:211–221

    Article  CAS  PubMed  Google Scholar 

  38. Mohamad S, Abdullah LC, Jamari SS, Osman Al Edrus SS, Aung MM, Sy Mohamad SF (2022) Production and characterization of bacterial cellulose nanofiber by Acetobacter xylinum 0416 using only oil palm frond juice as fermentation medium. J Nat Fibers 19(17):16005–16016

    Article  CAS  Google Scholar 

  39. Li W, Huang X, Liu H, Lian H, Xu B, Zhang W, Zhong C (2023) Improvement in bacterial cellulose production by co-culturing Bacillus cereus and Komagataeibacter xylinus. Carbohydr Polym 313:120892

    Article  CAS  PubMed  Google Scholar 

  40. Bae S, Shoda M (2005) Statistical optimization of culture conditions for bacterial cellulose production using Box–Behnken design. Biotechnol Bioeng 90(1):20–28

    Article  CAS  PubMed  Google Scholar 

  41. Panesar PS, Chavan Y, Chopra HK, Kennedy JF (2012) Production of microbial cellulose: response surface methodology approach. Carbohydr Polym 87(1):930–934

    Article  CAS  PubMed  Google Scholar 

  42. Montgomery DC (2017) Design and analysis of experiments. Wiley, Hoboken

    Google Scholar 

  43. Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14(1):10–32

    Article  CAS  PubMed  Google Scholar 

  44. Cannon RE, Anderson SM (1991) Biogenesis of bacterial cellulose. Crit Rev Microbiol 17(6):435–447

    Article  CAS  PubMed  Google Scholar 

  45. Mohite BV, Salunke BK, Patil SV (2013) Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions. Appl Biochem Biotechnol 169:1497–1511

    Article  CAS  PubMed  Google Scholar 

  46. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55(1):35–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Riaz T, Zeeshan R, Zarif F, Ilyas K, Muhammad N, Safi SZ, Rahim A, Rizvi SA, Rehman IU (2018) FTIR analysis of natural and synthetic collagen. Appl Spectroscop Rev 53(9):703–746

    Article  CAS  Google Scholar 

  48. Nandiyanto ABD, Oktiani R, Ragadhita R (2019) How to read and interpret FTIR spectroscope of organic material. Ind J Sci Technol 4(1):97–118

    Google Scholar 

  49. Gong J, Li J, Xu J, **ang Z, Mo L (2017) Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv 7(53):33486–33493

    Article  CAS  Google Scholar 

  50. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose. https://doi.org/10.1007/s10570-013-0030-4

    Article  PubMed  Google Scholar 

  51. Chiriac AI, Pastor FI, Popa VI, Aflori M, Ciolacu D (2014) Changes of supramolecular cellulose structure and accessibility induced by the processive endoglucanase Cel9B from Paenibacillus barcinonensis. Cellulose 21:203–219

    Article  CAS  Google Scholar 

  52. Moharram MA, Mahmoud OM (2007) X-ray diffraction methods in the study of the effect of microwave heating on the transformation of cellulose I into cellulose II during mercerization. J Appl Polym Sci 105(5):2978–2983

    Article  CAS  Google Scholar 

  53. French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  54. Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9

    Article  CAS  PubMed  Google Scholar 

  55. George J, Sajeevkumar VA, Kumar R, Ramana KV, Sabapathy SN, Bawa AS (2008) Enhancement of thermal stability associated with the chemical treatment of bacterial (Gluconacetobacter xylinus) cellulose. J Appl Polym Sci 108(3):1845–1851

    Article  CAS  Google Scholar 

  56. Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88(2):596–603

    Article  CAS  Google Scholar 

  57. Mohite BV, Patil SV (2014) Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydr Polym 106:132–141

    Article  CAS  PubMed  Google Scholar 

  58. Yan H, Huang D, Chen X, Liu H, Feng Y, Zhao Z, Lin Q (2018) A novel and homogeneous scaffold material: preparation and evaluation of alginate/bacterial cellulose nanocrystals/collagen composite hydrogel for tissue engineering. Polym Bullet 75:985–1000

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support of Technical Educational Quality Improvement Program-III (TEQIP-III), Ministry of Education, and Govt. of India.

Funding

There is no funding agency directly funded or supported this research work. The research work is conducted for the partial fulfilment of doctor of philosophy of Mr. Ashutosh Pandey.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [AP, AS, MKS], Methodology: [AS, AP], formal analysis and investigation: [MKS, AP], writing—original draft preparation: [AP, MKS, AS], writing—review and editing: [AS, AP], resources: [MKS, AP], supervision: [MKS, AS].

Corresponding author

Correspondence to Ashutosh Pandey.

Ethics declarations

Conflict of interest

Mr. Ashutosh Pandey has received the scholarship under Dr. Homi Bhabha scheme by Dr. APJ Kalam Technical University, Lucknow, India and partial support under Technical Educational Quality Improvement Program-III (TEQIP-III), Ministry of Education, and Govt. of India. Mukesh Kumar Singh and Annika Singh did not receive any research fund from any funding agency/company/department.

Ethical approval

Author ensures that all the authors mentioned in the article have agreed for authorship, read and approved the manuscript, and given consent for the submission and subsequent publication of the manuscript (the authorship should be based on the ICMJE guidelines).

Consent for participate

Informing participants about the research work and its nature, purpose and seeking their consent for participation. Author state that written or oral informed consent have been obtained from the all authors mentioned in the article and relevant documents must be provide when requested by journal.

Consent for publication

All three authors have extended their consent to communicate this research work for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Singh, A. & Singh, M.K. Novel low-cost green method for production bacterial cellulose. Polym. Bull. 81, 6721–6741 (2024). https://doi.org/10.1007/s00289-023-05023-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05023-w

Keywords

Navigation