Log in

Semiconducting indolocarbazole based polymer decorated with magnetic ferrofluid for efficient Cr(VI) removal

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript
    503 Service Unavailable: Requested route ('internalcitationsapi.springernature.app') has no available endpoints.

Abstract

A new polyindolocarbazole based polymer viz; ICZP4 has been synthesized via Suzuki cross coupling reaction. Subsequently, it has been modified as a semiconducting magnetic polymer hybrid (ICZP4F) with the assistance of a magnetic ferrofluid for the removal of Cr (VI) ions from waste streams. The characterization of ICZP4 has been done through FTIR, 1H NMR,13C NMR, GPC examinations. The hybrid material’s (ICZP4F) physical characteristics were evaluated by XRD, FTIR, SEM, and magnetic susceptibility measurements. The ICZP4F has been identified as a powerful adsorbent for toxic Cr(VI) ions with 91% separation efficiency; achieved at a rate of 122 mg/g at a pH of 2. The isotherm analysis indicates that the adsorption process follows the Freundlich model with a regression coefficient R2 = 0.999. The adsorptive removal efficiency of the hybrid has been explained based on the synergistic effect between ICZP4 and the magnetite present in the ferrofliud.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 3
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Irgashev RA, Kazin NA, Kim GA et al (2016) A new synthetic approach to fused nine-ring systems of the indolo [3,2-b] carbazole family through double Pd-catalyzed intramolecular C-H arylation. RSC Adv 6:70106–70116. https://doi.org/10.1039/C6RA11796A

    Article  CAS  Google Scholar 

  2. Zhao G, Dong H, Zhao H et al (2012) Substitution effect on molecular packing and transistor performance of indolo [3,2-b] carbazole derivatives. J Mater Chem 22:4409–4417. https://doi.org/10.1039/C1JM14891E

    Article  CAS  Google Scholar 

  3. Bellete M, Blouin N, Boudreault PT et al (2006) Optical and photophysical properties of indolocarbazole derivatives. J Phys Chem A 110:13696–13704

    Article  Google Scholar 

  4. Yudina LN, Bergman J (2003) Synthesis and alkylation of indolo [3,2-b] carbazoles. Tetrahedron 59:1265–1275. https://doi.org/10.1016/S0040-4020(03)00029-2

    Article  CAS  Google Scholar 

  5. Zhou E, Yamakawa S, Zhang Y et al (2009) Indolo [3,2-b] carbazole-based alternating donor–acceptor copolymers: synthesis, properties and photovoltaic application. J Mater Chem 19:7730–7737. https://doi.org/10.1039/b912258c

    Article  CAS  Google Scholar 

  6. Zhao HP, Tao XT, Wang FZ et al (2007) Structure and electronic properties of triphenylamine-substituted indolo [3,2-b] carbazole derivatives as hole-transporting materials for organic light-emitting diodes. Chem Phys Lett 439:132–137. https://doi.org/10.1016/j.cplett.2007.03.074

    Article  CAS  Google Scholar 

  7. Harun MH, Saion E, Kassim A et al (2007) Conjugated conducting polymers : a brief overview. Sensors Peterbrgh NH 2:63–68

    Google Scholar 

  8. Dai L (2004) Conducting polymers. Intell Macromol Smart Devices 1980:41–80. https://doi.org/10.1007/b97517

    Article  Google Scholar 

  9. Wang Y, Zhang S, Wang L et al (2015) The Suzuki coupling reaction as a post-polymerization modification: a promising protocol for construction of cyclic-brush and more complex polymers. Polym Chem 6:4669–4677. https://doi.org/10.1039/C5PY00551E

    Article  CAS  Google Scholar 

  10. Martin R, Buchwald SL (2008) Palladium-catalyzed Suzuki−Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc Chem Res 41:1461–1473. https://doi.org/10.1021/ar800036s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suzuki A (2004) Organoborane coupling reactions (Suzuki coupling). Proc Japan Acad Ser B 80:359–371. https://doi.org/10.2183/pjab.80.359

    Article  CAS  Google Scholar 

  12. Balamurugan S, Rajasekar K, Muthusankar E (2015) Synthesis of ferrofluid based conducting polymer composites for electro- magnetic interference shielding. NCR Acces-2015 1:2394–2703

    Google Scholar 

  13. Varshney S, Ohlan A, Jain VK et al (2014) Synthesis of ferro fluid based nanoarchitectured polypyrrole composites and its application for electromagnetic shielding. Mater Chem Phys 143:806–813. https://doi.org/10.1016/j.matchemphys.2013.10.018

    Article  CAS  Google Scholar 

  14. Pant RP, Dhawan SK, Kataria ND, Suri DK (2002) Investigations on ferrofluid-conducting polymer composite and its application. J Magn Magn Mater 252:16–19

    Article  CAS  Google Scholar 

  15. Pandey N, Shukla SK, Singh NB (2017) Water purification by polymer nanocomposites: an overview Water purification by polymer nanocomposites: an overview. Nanocomposites 3:47–66. https://doi.org/10.1080/20550324.2017.1329983

    Article  CAS  Google Scholar 

  16. Singh NB, Rai S, Agarwal S (2014) Polymer nanocomposites and Cr (VI) removal from water. Nanosci Technol 1:1–10

    Google Scholar 

  17. Sun L, Huang WM (2010) Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter 6(18):4403–4406

    Article  CAS  Google Scholar 

  18. Yong L, Wahab A, Peng C, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33. https://doi.org/10.1016/j.desal.2010.11.033

    Article  CAS  Google Scholar 

  19. Mu B, Tang J, Zhang L, Wang A (2017) Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-05755-6

    Article  CAS  Google Scholar 

  20. Bilgiç A, Çimen A (2019) Removal of chromium(VI) from polluted wastewater by chemical modification of silica gel with 4-acetyl-3-hydroxyaniline. RSC Adv 9:37403–37414. https://doi.org/10.1039/c9ra05810a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Islam MA, Angove MJ, Morton DW (2019) Recent innovative research on chromium (VI) adsorption mechanism. Environ Nanotechnol Monit Manag 12:100267. https://doi.org/10.1016/j.enmm.2019.100267

    Article  Google Scholar 

  22. Qasem NAA, Mohammed RH, Lawal DU (2021) Removal of heavy metal ions from wastewater: a comprehensive and critical review. NPJ Clean Water. https://doi.org/10.1038/s41545-021-00127-0

    Article  Google Scholar 

  23. Karimi-Maleh H, Ayati A, Ghanbari S et al (2021) Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: a comprehensive review. J Mol Liq 329:115062. https://doi.org/10.1016/j.molliq.2020.115062

    Article  CAS  Google Scholar 

  24. Bashir A, Malik LA, Ahad S et al (2019) Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett 17:729–754. https://doi.org/10.1007/s10311-018-00828-y

    Article  CAS  Google Scholar 

  25. Kumar V, Dwivedi SK (2021) A review on accessible techniques for removal of hexavalent Chromium and divalent Nickel from industrial wastewater: Recent research and future outlook. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.126229

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dou J, Huang Q, Huang H et al (2019) Mussel-inspired preparation of layered double hydroxides based polymer composites for removal of copper ions. J Colloid Interface Sci 533:416–427. https://doi.org/10.1016/j.jcis.2018.08.064

    Article  CAS  PubMed  Google Scholar 

  27. Joshi KM, Shrivastava VS (2011) Photocatalytic degradation of chromium (VI) from wastewater using nanomaterials like TiO2, ZnO, and CdS. Appl Nanosci 1:147–155. https://doi.org/10.1007/s13204-011-0023-2

    Article  CAS  Google Scholar 

  28. Yang X, Wan Y, Zheng Y et al (2019) Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J 366:608–621. https://doi.org/10.1016/j.cej.2019.02.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Y, Peng C, Padilla-Ortega E et al (2020) Cr(VI) adsorption on activated carbon: mechanisms, modeling and limitations in water treatment. J Environ Chem Eng 8:104031. https://doi.org/10.1016/j.jece.2020.104031

    Article  CAS  Google Scholar 

  30. Neolaka YA, Riwu AA, Aigbe UO, Ukhurebor KE, Onyancha RB, Darmokoesoemo H, Kusuma HS (2022) Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes. Results Chem 5:100711

    Article  Google Scholar 

  31. Naat JN, Neolaka YAB, Lapailaka T et al (2021) Adsorption of Cu(II) and Pb(II) using silica@mercapto (hs@m) hybrid adsorbent synthesized from silica of takari sand: optimization of parameters and kinetics. Rasayan J Chem 14:550–560. https://doi.org/10.31788/RJC.2021.1415803

    Article  CAS  Google Scholar 

  32. Ribeiro C, Scheufele FB, Espinoza-Quiñones FR et al (2018) A comprehensive evaluation of heavy metals removal from battery industry wastewaters by applying bio-residue, mineral and commercial adsorbent materials. J Mater Sci 53:7976–7995. https://doi.org/10.1007/s10853-018-2150-6

    Article  CAS  Google Scholar 

  33. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  34. Kuncoro EP, Soedarti T, Putranto TWC et al (2018) Characterization of a mixture of algae waste-bentonite used as adsorbent for the removal of Pb2+ from aqueous solution. Data Br 16:908–913. https://doi.org/10.1016/j.dib.2017.12.030

    Article  Google Scholar 

  35. Kuncoro EP, Isnadina DRM, Darmokoesoemo H et al (2018) Characterization, kinetic, and isotherm data for adsorption of Pb2+ from aqueous solution by adsorbent from mixture of bagasse-bentonite. Data Br 16:622–629. https://doi.org/10.1016/j.dib.2017.11.098

    Article  Google Scholar 

  36. Khera RA, Iqbal M, Ahmad A et al (2020) Kinetics and equilibrium studies of copper, zinc, and nickel ions adsorptive removal on to archontophoenix alexandrae: conditions optimization by rsm. Desalin Water Treat 201:289–300. https://doi.org/10.5004/dwt.2020.25937

    Article  CAS  Google Scholar 

  37. Neolaka YA, Lawa Y, Naat J, Lalang AC, Widyaningrum BA, Ngasu GF, Kusuma HS (2023) Adsorption of methyl red from aqueous solution using Bali cow bones (Bos javanicus domesticus) hydrochar powder. Results Eng 17:100824–100834

    Article  CAS  Google Scholar 

  38. Darmokoesoemo H, Setianingsih FR, Putranto TWLC, Kusuma HS (2016) Horn snail (Telescopium sp) and mud crab (Scylla sp) shells powder as low cost adsorbents for removal of Cu2+ from synthetic wastewater. Rasayan J Chem 9:550–555

    CAS  Google Scholar 

  39. Darmokoesoemo H, Magdhalena PTWLC, Kusuma HS (2016) Telescope snail (Telescopium sp) and mangrove crab (Scylla sp) as adsorbent for the removal of Pb2+ from aqueous solutions. Rasayan J Chem 9:680–685

    CAS  Google Scholar 

  40. Vintu M, Rajan VK, Unnikrishnan G, Muraleedharan K (2019) Suzuki coupling derived indolocarbazole based macromolecule as a solid phase/ solution phase sensor for Hg2+: experimental and theoretical explorations. Eur Polym J. https://doi.org/10.1016/J.EURPOLYMJ.2019.02.033

    Article  Google Scholar 

  41. Vintu M, Unnikrishnan G (2018) Diode characteristics and metal ion sensing features of a conjugated macromolecular system based on indolocarbazole-thiophene. Mater Sci Eng B 236–237:170–178. https://doi.org/10.1016/j.mseb.2018.11.017

    Article  CAS  Google Scholar 

  42. Vintu M, Unnikrishnan G, Shiju E, Chandrasekharan K (2018) Sonogashira coupling for optoelectronic and sensing applications. J Appl Polym Sci 136:46940–46952. https://doi.org/10.1002/app.46940

    Article  CAS  Google Scholar 

  43. Grigoras M, Negru OI, Solonaru AM (2015) poly (arylene ethynylene) s: modulation of their optoelectronic properties by changing the position of substituents. High Perform Polym 27:571–582. https://doi.org/10.1177/0954008315584169

    Article  CAS  Google Scholar 

  44. Vintu M, Unnikrishnan G (2019) Indolocarbazole based polymer coated super adsorbent polyurethane sponges for oil/organic solvent removal. J Environ Manage 248:109344. https://doi.org/10.1016/j.jenvman.2019.109344

    Article  CAS  PubMed  Google Scholar 

  45. Negru OI, Solonaru AM, Grigoras M (2016) Indolo [3,2-b] carbazole-based poly (arylene vinylene) s. The influence of substitution position on spectroscopic and electrochemical properties. Polym Int 65:1449–1457. https://doi.org/10.1002/pi.5200

    Article  CAS  Google Scholar 

  46. Wang L, Fu Y, Zhu L et al (2011) Synthesis and photovoltaic properties of low-bandgap polymers based on N-arylcarbazole. Polymer 52:1748–1754. https://doi.org/10.1016/j.polymer.2011.02.029

    Article  CAS  Google Scholar 

  47. Resta IM, Horwitz G, Elizalde MLM, Jorge GA, Molina FV, Antonel PS (2013) Magnetic and conducting properties of composites of conducting polymers and ferrite nanoparticles. IEEE Trans Magn 49(8):4598–4601

    Article  CAS  Google Scholar 

  48. Howes P, Green M, Bowers A et al (2010) Magnetic conjugated polymer nanoparticles as bimodal imaging agents. J Am Chem Soc 132:9833–9842

    Article  CAS  PubMed  Google Scholar 

  49. Anju M, Renuka NK (2015) A novel template free synthetic strategy to graphene–iron oxide nanotube hybrid. RSC Adv 5:78648–78654. https://doi.org/10.1039/C5RA16954B

    Article  CAS  Google Scholar 

  50. Muñoz-Bonilla A, Sánchez-Marcos J, Herrasti P (2017) Magnetic nanoparticles-based conducting polymer nanocomposites. Springer, Cham

    Book  Google Scholar 

  51. Kin M, Kura H, Tanaka M et al (2016) hydrogen gas atmosphere Improvement of saturation magnetization of Fe nanoparticles by post-annealing in a hydrogen gas atmosphere. J Appl Phys 117:17E714-23. https://doi.org/10.1063/1.4919050

    Article  CAS  Google Scholar 

  52. Gaffer A, Al AA, Aman D (2017) Magnetic zeolite-natural polymer composite for adsorption of chromium (VI). Egypt J Pet 26:995–999. https://doi.org/10.1016/j.ejpe.2016.12.001

    Article  Google Scholar 

  53. Fan L, Luo C, Sun M, Qiu H (2012) Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal †. J Mater Chem 22:24577–24583. https://doi.org/10.1039/c2jm35378d

    Article  CAS  Google Scholar 

  54. Vetriselvi V, Santhi RJ (2015) Redox polymer as an adsorbent for the removal of chromium (VI) and lead (II) from the tannery ef fl uents. Water Resour Ind 10:39–52. https://doi.org/10.1016/j.wri.2015.02.003

    Article  Google Scholar 

  55. Neolaka YAB, Lawa Y, Naat J, Riwu AAP, Mango AW, Darmokoesoemo H, Widyaningrum BA, Munawar Iqbal HSK (2022) Efficiency of activated natural zeolite-based magnetic composite (ANZ-Fe3O4) as a novel adsorbent for removal of Cr(VI) from wastewater. J Mater Res Technol 18:2896–2909

    Article  CAS  Google Scholar 

  56. Neolaka YAB, Lawa Y, Naat J et al (2021) Evaluation of magnetic material IIP@GO-Fe3O4 based on kesambi wood (Schleichera oleosa) as a potential adsorbent for the removal of Cr(VI) from aqueous solutions. React Funct Polym 166:105000. https://doi.org/10.1016/j.reactfunctpolym.2021.105000

    Article  CAS  Google Scholar 

  57. Neolaka YAB, Supriyanto G, Darmokoesoemo H, Kusuma HS (2018) Characterization, isotherm, and thermodynamic data for selective adsorption of Cr(VI) from aqueous solution by Indonesia (Ende-Flores) natural zeolite Cr(VI)-imprinted-poly(4-VP-co-EGDMA)-ANZ (IIP-ANZ). Data Br 17:1020–1029. https://doi.org/10.1016/j.dib.2018.01.081

    Article  Google Scholar 

  58. Neolaka YAB, Supriyanto G, Darmokoesoemo H, Kusuma HS (2018) Characterization, kinetic, and isotherm data for Cr(VI) removal from aqueous solution by Cr(VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure. Data Br 17:969–979. https://doi.org/10.1016/j.dib.2018.01.076

    Article  Google Scholar 

  59. Neolaka YAB, Lawa Y, Naat JN et al (2020) A Cr(VI)-imprinted-poly(4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr(VI) ions from electroplating industrial wastewater. React Funct Polym 147:104451. https://doi.org/10.1016/j.reactfunctpolym.2019.104451

    Article  CAS  Google Scholar 

  60. Neolaka YAB, Lawa Y, Naat JN, Riwu AAP, Iqbal M, Handoko Darmokoesoemo HSK (2020) The adsorption of Cr(VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): study of kinetics, isotherms and thermodynamics. J Mater Res Technol 9:6544–6556

    Article  CAS  Google Scholar 

  61. Neolaka YAB, Supriyanto G, Kusuma HS (2018) Adsorption performance of Cr(VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure for Cr(VI) removal from aqueous solution. J Environ Chem Eng 6:3436–3443. https://doi.org/10.1016/j.jece.2018.04.053

    Article  CAS  Google Scholar 

  62. Aigbe UO, Ukhurebor KE, Onyancha RB et al (2021) Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review. J Mater Res Technol 14:2751–2774. https://doi.org/10.1016/j.jmrt.2021.07.140

    Article  CAS  Google Scholar 

  63. Neolaka YAB, Lawa Y, Naat J, Riwu AAP, Darmokoesoemo H, Widyaningrum BA, Munawar Iqbal HSK (2021) Indonesian kesambi wood (Schleichera oleosa) activated with pyrolysis and HSO combination methods to produce mesoporous activated carbon for Pb(II) adsorption from aqueous solution. Environ Technol Innov 24:101997–102011

    Article  CAS  Google Scholar 

  64. Budiana IGMN, Jasman J, Neolaka YA, Riwu AA, Elmsellem H, Darmokoesoemo H, Kusuma HS (2021) Synthesis, characterization and application of cinnamoyl C-phenylcalix [4] resorcinarene (CCPCR) for removal of Cr (III) ion from the aquatic environment. J Mol Liq 324:114776

    Article  CAS  Google Scholar 

  65. Lee S, Kim W, Laldawngliana C, Tiwari D (2010) Removal behavior of surface modified sand for Cd (II) and Cr (VI) from aqueous solutions. J Chem Eng Data 55:3089–3094

    Article  CAS  Google Scholar 

  66. Asuha S, Zhou XG, Zhao S (2010) Adsorption of methyl orange and Cr (VI) on mesoporous TiO2 prepared by hydrothermal method. J Hazard Mater 181:204–210. https://doi.org/10.1016/j.jhazmat.2010.04.117

    Article  CAS  PubMed  Google Scholar 

  67. Ai Z, Cheng Y, Zhang L (2008) Efficient removal of Cr (VI) from aqueous solution with Fe@Fe2O3 core-shell nanowires. Environ Sci Technol 42:6955–6960

    Article  CAS  PubMed  Google Scholar 

  68. Mahreni M, Ramadhan RR, Pramadhana MF et al (2022) Synthesis of metal organic framework (MOF) based Ca-Alginate for adsorption of malachite green dye. Polym Bull 79:11301–11315. https://doi.org/10.1007/s00289-022-04086-5

    Article  CAS  Google Scholar 

  69. Ferreira TA, Rodriguez JA, Guevara-lara A et al (2017) Chromium (VI) removal from aqueous solution by magnetite coated by a polymeric ionic. Materials 10:502–511. https://doi.org/10.3390/ma10050502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ramesha GK, Kumara AV, Muralidhara HB, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277. https://doi.org/10.1016/j.jcis.2011.05.050

    Article  CAS  PubMed  Google Scholar 

  71. Kumar S, Nair RR, Pillai PB et al (2014) Graphene oxide−MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces 6:17426–17436. https://doi.org/10.1021/am504826q

    Article  CAS  PubMed  Google Scholar 

  72. Huang Z, Zheng X, Lv W et al (2011) Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27:7558–7562. https://doi.org/10.1021/la200606r

    Article  CAS  PubMed  Google Scholar 

  73. Fang JUN, Gu Z, Gang D et al (2007) Cr (VI) removal from aqueous solution by activated carbon coated with quaternized. Environ Sci Technol 41:4748–4753. https://doi.org/10.1021/es061969b

    Article  CAS  PubMed  Google Scholar 

  74. Wu N, Wei H, Zhang L (2012) Efficient removal of heavy metal ions with biopolymer template synthesized mesoporous titania beads of hundreds of micrometers size. Environ Sci Technol 46:419–425. https://doi.org/10.1021/es202043u

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors Vintu M., is grateful to MHRD, Govt. of India for a research fellowship. The authors acknowledge the support by Mr. Avudaiappan G. (Cochin University of Science and Technology) for the magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Unnikrishnan.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2417 KB)

Supplementary file2 (DOCX 528 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vintu, M., Monisha, M., Unnikrishnan, G. et al. Semiconducting indolocarbazole based polymer decorated with magnetic ferrofluid for efficient Cr(VI) removal. Polym. Bull. 81, 3375–3402 (2024). https://doi.org/10.1007/s00289-023-04883-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04883-6

Keywords

Navigation