Log in

Effect of functionalizing sawdust as a reinforcement in two types of renewable polyurethane

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, composites were prepared in polyurethane (PU) matrices with sawdust fibers at levels of 10, 20 and 30%. The PU was obtained using polyols, castor oil and wood tar pitch (bio-pitch), reacted with a polymeric 4,4′-diphenylmethane diisocyanate (MDI), in a ratio NCO/OH = 1:1, catalyzed by dibutyltin dilaurate. Two groups of composites were formulated: materials synthesized only with polyol castor oil (PU 0%), and those obtained with 25% bio-pitch and 75% castor oil (PU 25%). The sawdust fibers were previously modified by mercerization, followed by benzylation or reaction with toluene diisocyanate (TDI). The changes were confirmed by infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetry (TG), X-ray diffraction and X-ray photoelectron spectroscopy (XPS). The addition of bio-pitch to the matrix caused an increase in its porosity and a decrease in density. The sawdust showed good adhesion to the matrix containing bio-pitch, which was confirmed by the increase in the mechanical properties of its composites. The water absorption results showed that the matrix composites containing bio-pitch are more hydrophobic, with greater intercrossing, which corroborates the evaluation of good fiber–matrix interaction. Vegetable pitch seems to behave as a coupling agent between the fiber and the matrix, presenting itself as a suitable polyol for the synthesis of composites from renewable sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Papageorgiou GZ (2018) Thinking green: sustainable polymers from renewable resources. Polymers 10:952. https://doi.org/10.3390/polym10090952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26. https://doi.org/10.1023/A:1021013921916

    Article  CAS  Google Scholar 

  3. Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schafer HJ (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Ind 50:3854–3871. https://doi.org/10.1002/anie.201002767

    Article  CAS  Google Scholar 

  4. Melo BN, Pasa VMD (2003) Composites based on eucalyptus tar pitch/castor oil polyurethane and short sisal fibers. J Appl Polym Sci 89:3797–3802. https://doi.org/10.1002/app.12424

    Article  CAS  Google Scholar 

  5. Costa RRC, Sato ES, Ribeiro ML, Medeiros R, Vieira AFC, Guedes RM, Tita V (2020) Polyurethane derived from castor oil reinforced with long cotton fibers: Static and dynamic testing of a novel eco-friendly composite material. J Compos Mater 54(22):3125–3142. https://doi.org/10.1177/0021998320911984

    Article  CAS  Google Scholar 

  6. Das A, Mahanwar P (2020) A brief discussion on advances in polyurethane applications. Adv Ind Eng Polym Res 3:93–101. https://doi.org/10.1016/j.aiepr.2020.07.002

    Article  Google Scholar 

  7. Somarathna HMCC, Raman SN, Mohotti D, Mutalib AA, Badri KH (2018) The use of polyurethane for structural and infrastructural engineering applications: a state-of-the-art review. Const Build Mater 190:995–1014. https://doi.org/10.1016/j.conbuildmat.2018.09.166)

    Article  CAS  Google Scholar 

  8. Zhang J, Yao M, Chen J, Jiang Z, Ma Y (2019) Synthesis and properties of polyurethane elastomers based on renewable castor oil polyols. J Appl Polym Sci 136:47309. https://doi.org/10.1002/APP.47309

    Article  Google Scholar 

  9. Coman AE, Peyrton J, Hubca G, Sarbu A, Gabor AR, Nicolae CA, Iordache TV, Averous L (2021) Synthesis and characterization of renewable polyurethane foams using different biobased polyols from olive oil. Eur Polym J 149:110363. https://doi.org/10.1016/j.eurpolymj.2021.110363

    Article  CAS  Google Scholar 

  10. Ma Y, **ao Y, Zhao Y, Bei Y, Hu L, Zhou Y, Jia P (2022) Biomass based polyols and biomass based polyurethane materials as a route towards sustainability. React Funct Polym 175:105285. https://doi.org/10.1016/j.reactfunctpolym.2022.105285

    Article  CAS  Google Scholar 

  11. Gurunathana T, Arukula R (2018) High performance polyurethane dispersion synthesized from plant oil renewable resources: a challenge in the green materials. Polym Degrad Stab 150:122–213. https://doi.org/10.1016/j.polymdegradstab.2018.02.014

    Article  CAS  Google Scholar 

  12. Sawpan MA (2018) Polyurethanes from vegetable oils and applications: a review. J Polym Res 25:184. https://doi.org/10.1007/s10965-018-1578-3

    Article  CAS  Google Scholar 

  13. Członka S, Kerche EF, Neves RM, Strkowska A, Strzelec K (2021) Bio-based rigid polyurethane foam composites reinforced with bleached curauá fiber. Int J Mol Sci 22:11203. https://doi.org/10.3390/ijms222011203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ellenberger A, Polli ML, Azevedo E, de Paula CRP (2013) Drilling of natural fiber-reinforced based polyurethane foam composite. J App Polym Sci. 129:2224–2233. https://doi.org/10.1177/00219983211059581

    Article  CAS  Google Scholar 

  15. Melo BN, Santos CG, Botaro VR, Pasa VMD (2008) Eco-composites of polyurethane and Luffa aegyptiaca modified by mercerisation and benzylation. Polym Polym Compos 16(4):249. https://doi.org/10.1177/096739110801600404

    Article  CAS  Google Scholar 

  16. Silvia A (1983) Mamona–Potencialidades Agroindustriais do Nordeste Brasileiro. Recife: SUDENE–ADR, p 154

  17. Park CK, Lee JH, Kim IS, Kim SH (2020) Castor oil-based polyols with gradually increasing functionalities for biopolyurethane synthesis. J App Polym Sci 137:48304. https://doi.org/10.1002/app.48304

    Article  CAS  Google Scholar 

  18. Villar WD (1993) Química e tecnologia dos poliuretanos. In: Rio de Janeiro (eds) Pronor

  19. Sultan M, Jamal Z, Jubeen F, Farooq A, Bibi I, Uroos M, Chaudhry H, Alissa SA, Iqbal M (2021) Green synthesis of biodegradable polyurethane and castor oil-based composite for benign transformation of methylene blue. Arab J Chem 14:103417. https://doi.org/10.1016/j.arabjc.2021.103417

    Article  CAS  Google Scholar 

  20. Tavares LB, Boas CV, Schleder GR, Nacas AM, Rosa DS, Santos DJ (2016) Biobased polyurethane prepared from based kraft lignin and modified castor oil. Express Polym Lett 10:927–940

    Article  CAS  Google Scholar 

  21. Ionescu M, Radojcic D, Wan X, Shrestha ML, Petrovic ZS, Upshaw TA (2016) Highly functional polyols from castor oil for rigid polyurethanes. Eur Polym J 84:736–749. https://doi.org/10.1016/j.eurpolymj.2016.06.006

    Article  CAS  Google Scholar 

  22. Melo BN, Pasa VMD, Martins MD, Macedo WAA, Muniz EP (2018) Strengthening of a polyurethane matrix by luffa cylindrica treated with TDI: water absorption and mechanical properties. J Polym Environ 26:2514–2521

    Article  CAS  Google Scholar 

  23. Araújo RCS, Pasa VMD, Melo BN (2005) Effects of biopitch on the properties of flexible polyurethane foams. Eur Polym J 41(6):1420–1428. https://doi.org/10.1016/j.eurpolymj.2004.12.021

    Article  CAS  Google Scholar 

  24. Araújo RCS, Pasa VMD (2004) New eucalyptus tar-derived polyurethane coatings. Prog Org Coat 51(1):6–14. https://doi.org/10.1016/j.porgcoat.2004.04.002

    Article  CAS  Google Scholar 

  25. Melo BN, Pasa VMD (2003) Composites based on eucalyptus tar pitch/castor oil polyurethane and short sisal fibers. J App Polym Sci 89(14):3797–3802. https://doi.org/10.1002/app.12424

    Article  CAS  Google Scholar 

  26. Prauchner MJ, Pasa VMD, Otani S, Otani C (2005) Biopitch-based general purpose carbon fibers: processing and properties. Carbon 43:591–597. https://doi.org/10.1016/j.carbon.2004.10.023

    Article  CAS  Google Scholar 

  27. Prauchner MJ, Pasa VMD, Otani C, Otani S (2001) Characterization and thermal polymerization of eucalyptus tar pitches. Energy Fuels 15:449–454. https://doi.org/10.1021/ef000196o

    Article  CAS  Google Scholar 

  28. Prauchner MJ, Pasa VMD, Otani C, OtanI S (2004) The use of DSC to assess the stabilization of thermoplastic eucalyptus tar pitch fibers. J Therm Anal Cal 76:935–940. https://doi.org/10.1023/B:JTAN.0000032278.06131.69

    Article  CAS  Google Scholar 

  29. Melo BN, Pasa VMD (2004) Thermal and morphological study of polyurethanes based on EUCALYPTUS tar pich and castor oil. J App Polym Sci 92:3287–3291. https://doi.org/10.1002/app.20278

    Article  CAS  Google Scholar 

  30. Tiuca AE, Nemeş O, Vermeşana H, Tomab AC (2019) New sound absorbent composite materials based on sawdust and polyurethane foam. Compos Part B Eng 165:120–130. https://doi.org/10.1016/j.compositesb.2018.11.103

    Article  CAS  Google Scholar 

  31. Namrata VP, Muhammad MR, Rahman AN (2019) “Green” composites using bioresins from agro-wastesand modified sisal fibers. Polym Compos 40:99–108. https://doi.org/10.1002/pc.24607

    Article  CAS  Google Scholar 

  32. Głowinska E, Datta J, Parcheta P (2017) Effect of sisal fiber filler on thermal properties of bio-based polyurethane composites. J Therm Anal Calorim 130:113–122. https://doi.org/10.1007/s10973-017-6293-5

    Article  CAS  Google Scholar 

  33. Li M, Pu Y, Thomas VM, Yoo CG, Ozcan S, Deng Y, Nelson K, Ragauskas AJ (2020) Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos B 200:108254. https://doi.org/10.1016/j.compositesb.2020.108254

    Article  CAS  Google Scholar 

  34. Hassan MZ, Roslan SA, Sapuan SM, Rasid ZA, Mohd Nor AF, Md Daud MY, Dolah R, Yusof MZM (2020) Mercerization optimization off bamboo (Bambusa vulgaris) fiber-feinforced epoxy composite structures using a box-behnken design. Polymers 12:1367. https://doi.org/10.3390/polym12061367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cai M, Takagi H, Nakagaito AN, Li Y, Waterhouse GIN (2016) Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos Part A App Sci Manuf 90:589–597. https://doi.org/10.1016/j.compositesa.2016.08.025

    Article  CAS  Google Scholar 

  36. Vardhini KJV, Murugan R, Selvi CT, Surjit R (2016) Optimisation of alkali treatment of banana fibres on lignin removal. Indian J Fibre Text Res 41:156–160

    CAS  Google Scholar 

  37. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  38. Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of sisal fiber-reinforced polyethylene composites. Polymer 37:5139–5149. https://doi.org/10.1016/0032-3861(96)00144-9

    Article  CAS  Google Scholar 

  39. Spiridon L, Anghel N, Bele A (2015) The behaviour of biodegradable composites on starch reinforced with modified cellulosic fibers. Polym Adv Technol 26:1189–1197. https://doi.org/10.1002/pat.3553

    Article  CAS  Google Scholar 

  40. Ferreira FC, Curvelo AAS, Mattoso LHC (2003) Preparation and characterization of benzylated sisal fibers. J App Polym Sci 89:2957–2965. https://doi.org/10.1002/app.12409

    Article  CAS  Google Scholar 

  41. Deslandes Y, Pleizier G, Alexander D, Santerre P (1998) XPS and SIMS characterisation of segmented polyether polyurethanes containing two different soft segments. Polymer 39:2361–2366. https://doi.org/10.1016/S0032-3861(97)00533-8

    Article  CAS  Google Scholar 

  42. McBurney LF (1954) Kinetics of degradation reactions. In: Ott E, Spurlin HM, Grafflin MW (eds) Cellulose and cellulose derivatives, vol 1, 2nd edn. Interscience, New York, pp 99–167

    Google Scholar 

  43. Dominguez-rosado E, Liggat JJ, Snape CE, Eling B, Pichtel J (2002) Thermal degradation of urethane modified polyisocyanurate foams based on aliphatic and aromatic polyester polyol. Polym Degrad Stab 78:1–5. https://doi.org/10.1016/S0141-3910(02)00086-1

    Article  CAS  Google Scholar 

  44. Martins MCL, Wang D, Ji J, Feng L, Barbosa MA (2003) Albumin and Fibrinogen Adsorption on PU-PHEMA surfaces. Biomaterials 24:2067–2076. https://doi.org/10.1016/S0142-9612(03)00002-4

    Article  CAS  PubMed  Google Scholar 

  45. Bawn C (1987) Surface analysis. In: Mark HF, Bikales N, Over-berger CG, Menges G (eds) Encyclopedia of polymer science and engineering: JI Kroschwitz, vol 16. Wiley, New York, p 400

    Google Scholar 

  46. Sreekala MS, kumaran MG, Thomas S (2002) Water sorption in oil palm fiber reinforced phenol formaldehyde composites. Compos Part A Appl Sci Manuf 33:736–777. https://doi.org/10.1016/S1359-835X(02)00032-5

    Article  Google Scholar 

  47. Daniel IM, Ishai O (1994) Engineering mechanics of composite materials, 1st edn. Oxford University Press, New York

    Google Scholar 

  48. Joly C, Gauthier R, Escoubes M (1996) Partial masking of cellulosic hydrophilicity for composite applications. Water sorption by chemically modified fibers. J Appl Polym Sci 61:57–69. https://doi.org/10.1002/(SICI)1097-4628(19960705)61:1%3c57::AID-APP7%3e3.0.CO;2-T

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out through scientific cooperation with the Federal University of Minas Gerais and the analysis carried out at the Laboratory of Applied Physics of the CDTN to whom I would like to thank.

Funding

Benzylation ensured a lower water absorption to the composites generated with 20% and 30% of these fibers due to the benzene rings exposed on the fiber surface.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Breno Nonato de Melo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Melo, B.N., Pasa, V.M.D., Martins, M.D. et al. Effect of functionalizing sawdust as a reinforcement in two types of renewable polyurethane. Polym. Bull. 81, 3107–3126 (2024). https://doi.org/10.1007/s00289-023-04833-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04833-2

Keywords

Navigation