Log in

Development of smart polyurethane foam with combined capabilities of thermal insulation and thermal energy storage by integrating microencapsulated phase change material

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyurethane (PU) foam is most commonly used in thermal insulation in cold storage applications whereas it lacks thermal energy storage characteristics. In the present work, a phase-changing material n-pentadecane is microencapsulated with poly (methyl methacrylate-co-methacrylic acid) using oil in water (O/W) emulsion polymerization followed by the incorporation into the polyurethane foam formulation to fabricate a composite. The purpose of the study is to combine thermal insulation along with thermal energy storage characteristics into polyurethane foam. The phase change enthalpy of polyurethane foam has been improved from 44.80 to 60.40 J/g by changing the microcapsule loading fraction from 10 to 30%. The composite PU foam exhibits good thermal reliability even after 100 thermal cycling tests. The morphological observation confirms the decrease in the cell size while increasing the microcapsule content. A prototype has been fabricated and tested, showing an enhancement in the thermal energy storage capacity of PU composite foam. This performance makes this PU-PCM system feasible for cold energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Su W, Darkwa J, Kokogiannakis G (2015) Review of solid-liquid phase change materials and their encapsulation technologies. Renew Sustain Energy Rev 48:373–391

    Article  CAS  Google Scholar 

  2. Zhang J, Feng Y, Yuan H et al (2015) Thermal properties of C17H36/MCM-41 composite phase change materials. Comput Mater Sci 109:300–307

    Article  CAS  Google Scholar 

  3. Tang F, Su D, Tang Y et al (2015) Synthesis and thermal properties of fatty acid eutectics and diatomite composites as shape stabilized phase change materials with enhanced thermal conductivity. Sol Energy Mater Sol Cells 141:218–224

    Article  CAS  Google Scholar 

  4. Paul A, Shi L, Bielawski C (2015) A eutectic mixture of galactitol and mannitol as a phase change material for latent heat storage. Energy Convers Manage 103:139–146

    Article  CAS  Google Scholar 

  5. Milián Y, Gutiérrez A, Grágeda M et al (2017) A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renew Sustain Energy Rev 73:983–999

    Article  Google Scholar 

  6. Inaba H, Morita S (1995) Flow and cold heat-storage characteristics of phase-change emulsion in a coiled double tube heat exchanger. J Heat Transfer 117:440–446

    Article  CAS  Google Scholar 

  7. Sánchez-Silva L, Carmona M, de Lucas A et al (2010) Scale-up of a suspension-like polymerization process for the microencapsulation of phase change materials. J Microencapsul 27:583–593

    Article  PubMed  Google Scholar 

  8. Srinivasaraonaik B, Singh B, Tyagi L et al (2020) Microencapsulation of a eutectic PCM using in situ polymerization technique for thermal energy storage. Int J Energy Res 44:1–11

    Google Scholar 

  9. Liang C, Lingling X, Hongbo S et al (2009) Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system. Energy Convers Manage 50:723–729

    Article  Google Scholar 

  10. Iqbal K, Sun D (2014) Development of thermo-regulating polypropylene fiber-containing microencapsulated phase change materials. Renew Energy 71:473–479

    Article  CAS  Google Scholar 

  11. Zhou Z, Zhang Z, Zuo J et al (2015) Phase change materials for solar thermal energy storage in residential buildings in a cold climate. Renew Sustain Energy Rev 48:692–703

    Article  CAS  Google Scholar 

  12. Zhang H, Liu Z, Mai J et al (2021) Super-elastic smart phase change material (SPCM) for thermal energy storage. Chem Eng J 411:1–8

    Article  Google Scholar 

  13. Fu Z, Su L, Li J et al (2014) Elastic silicone encapsulation of n-hexadecyl bromide by microfluidic approach as novel microencapsulated phase change materials. Thermochim Acta 590:24–29

    Article  CAS  Google Scholar 

  14. Riahi A, Kavian S, Mosleh H et al (2021) Evaluation of a cooling system integrated with different phase change materials and its effect on peak load shaving. Int J Energy Res 45:10425–10449

    Article  CAS  Google Scholar 

  15. Giro-Paloma J, Alkan C, Chimenos J et al (2017) Comparison of microencapsulated phase change materials prepared at laboratory containing the same core and different shell materials. Appl Sci 7:1–9

    Article  Google Scholar 

  16. Sánchez L, Sánchez P, de Lucas A et al (2007) Microencapsulation of PCMs with a polystyrene shell. Colloid Polym Sci 285:377–1385

    Article  Google Scholar 

  17. Li F, Zhou S, Chen S et al (2018) Preparation of low-temperature phase change materials microcapsules and its application to asphalt pavement. J Mater Civ Eng 30:1–10

    Article  Google Scholar 

  18. Yang C, Fischer L, Maranda S et al (2015) Rigid polyurethane foams incorporated with phase change materials: a state-of-the-art review and future research pathways. Energy Build 87:25–36

    Article  Google Scholar 

  19. Sarier N, Onder E (2007) Thermal characteristics of polyurethane foams incorporated with phase change materials. Thermochim Acta 454:90–98

    Article  CAS  Google Scholar 

  20. You M, Zhang X, Wang J et al (2009) Polyurethane foam containing microencapsulated phase-change materials with styrene-divinylbenzene co-polymer shells. J Mater Sci 44:3141–3147

    Article  CAS  Google Scholar 

  21. Liao H, Liu Y, Chen R et al (2020) Preparation and characterization of polyurethane foams containing microencapsulated phase change materials for thermal energy storage and thermal regulation. Polym Int 70:619–627

    Article  Google Scholar 

  22. Zheng L, Zhang W, Liang F (2017) A review about phase change material cold storage system applied to solar-powered air-conditioning system. Adv Mech Eng 9:1–20

    Article  CAS  Google Scholar 

  23. Mylon Z, Kolokotroni M, Tassou S (2017) Frozen food retail: measuring and modeling energy use and space environmental systems in an operational supermarket. Energy Build 144:129–143

    Article  Google Scholar 

  24. Alzuwaid F, Ge Y, Tassou S et al (2016) The novel use of phase change materials in an open type refrigerated display cabinet: a theoretical investigation. Appl Energy 180:76–85

    Article  Google Scholar 

  25. Maerić D, Pavković B, Lenić K (2019) An experimental research on the energy efficiency of a beverage cooler with the latent heat storage. Appl Therm Eng 148:270–277

    Article  Google Scholar 

  26. Ezan M, Doganay E, Yavuz F et al (2017) A numerical study on the usage of phase change material (PCM) to prolong compressor off period in a beverage cooler. Energy Conver Manage 142:95–106

    Article  Google Scholar 

  27. Amaral C, Vicente R, Ferreira V et al (2017) Polyurethane foams with microencapsulated phase change material: comparative analysis of thermal conductivity characterization approaches. Energy Build 153:392–402

    Article  Google Scholar 

  28. Sarkar S, Mestry S, Mhaske S (2022) Developments in phase change material (PCM) doped energy efficient polyurethane (PU) foam for perishable food cold-storage applications: a review. J. Energy storage 50:1–27

    Article  Google Scholar 

  29. Liu H, Wang X, Wu D (2019) Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review. Sustain Energ Fuels 3:1091–1149

    Article  CAS  Google Scholar 

  30. Naikwadi A, Samui A, Mahanwar P (2021) Fabrication and experimental investigation of microencapsulated eutectic phase change material-integrated polyurethane sandwich tin panel composite for thermal energy storage in buildings. Int J Energy Res 45:20783–20794

    Article  CAS  Google Scholar 

  31. Tariq A, Shakir M, Afzal A et al (2020) Fabrication and characterization of the blend of polyurethane (PU) and phase change materials (PCM) for energy storage and release. IOPSciNotes 1:1–6

    Article  Google Scholar 

  32. Zhua Y, Qina Y, Lianga S et al (2019) Nanoencapsulated phase change material with polydopamine-SiO2 hybrid shell for tough thermo-regulating rigid polyurethane foam. Thermochim Acta 676:04–114

    Google Scholar 

  33. Liang S, Zhu Y, Wang H et al (2016) Preparation and characterization of thermoregulated rigid polyurethane foams containing nanoencapsulated phase change materials. Ind Eng Chem Res 55:2721–2730

    Article  CAS  Google Scholar 

  34. Amaral C, Silva T, Mohseni F et al (2021) Experimental and numerical analysis of the thermal performance of polyurethane foams panels incorporating phase change material. Energy 216:119213

    Article  CAS  Google Scholar 

  35. Aydın A, Okutan H (2013) Polyurethane rigid foam composites incorporated with fatty acid ester-based phase change material. Energy Convers Manag 8:74–81

    Article  Google Scholar 

  36. Borreguero A, Rodriguez J, Valverde J et al (2012) Characterization of rigid polyurethane foams containing microencapsulted phase change materials: microcapsules type effect. J Appl Polym Sci 128:582–590

    Article  Google Scholar 

  37. Amarala C, Pinto S, Silva T et al (2020) Development of polyurethane foam incorporating phase change material for thermal energy storage. J Energy Storage 28:101177

    Article  Google Scholar 

  38. **ang H, An J, Zeng X (2019) Preparation and properties of polyurethane rigid foammaterials modified by microencapsulated phase change materials. Polym Compos 41:1662–1672

    Article  Google Scholar 

  39. Tinti A, Tarzia A, Passaro A et al (2014) Thermographic analysis of polyurethane foams integrated with phase change materials designed for dynamic thermal insulation in refrigerated transport. Appl Therm Eng 70:201–210

    Article  CAS  Google Scholar 

  40. Gama N, Amaral C, Silva T et al (2018) Thermal energy storage and mechanical performance of crude glycerol polyurethane composite foams containing phase change materials and expandable graphite. Mater 11:1896–1912

    Article  Google Scholar 

  41. Bouchahdanea K, Ouelaa N, Belaadi A (2021) Static and fatigue compression behaviour of conventional and auxetic open cell foam. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2021.1972496

    Article  Google Scholar 

  42. Borreguero A, Rodríguez F, Valverde L et al (2011) Characterization of rigid polyurethane foams containing microencapsulated Rubitherm® RT27: catalyst effect. Part II J Mater Sci 46:347–356

    Article  CAS  Google Scholar 

  43. Lubguban A, Tu A, Lozada Y et al (2009) Noncatalytic polymerization of ethylene glycol and epoxy molecules for rigid polyurethane foam applications. J Appl Polym Sci 112:2185–2194

    Article  CAS  Google Scholar 

  44. Dawson J, Shortall J (1982) The microstructure of rigid polyurethane foams. J Mater Sci 17:220–224

    Article  CAS  Google Scholar 

  45. Verdejo R, Saiz-Arroyo C, Carretero-Gonzalez J et al (2008) Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets. Eur Polym J 44:2790–2797

    Article  CAS  Google Scholar 

  46. Ligoure C, Cloitre M, Le Christille C et al (2005) Making polyurethane foams from microemulsions. Polymer 46:6402–6410

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors are thankful to Covestro India Private Limited (CIPL) for sponsoring this research and providing valuable input in analyzing the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Mhaske.

Ethics declarations

Conflict of interest

The authors want to declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, U.R., Emmanuel, I., Sreenivasarao, A. et al. Development of smart polyurethane foam with combined capabilities of thermal insulation and thermal energy storage by integrating microencapsulated phase change material. Polym. Bull. 80, 13099–13115 (2023). https://doi.org/10.1007/s00289-023-04695-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04695-8

Keywords

Navigation