Log in

Clindamycin-loaded nanofibers of polylactic acid, elastin and gelatin for use in tissue engineering

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present work, polylactic acid (PLA), elastin and gelatin fibers, containing clindamycin, were prepared to test their potential application as wound dressings. They underwent release studies to determine the mechanism of drug release through mathematical models. The fibers have a homogeneous morphology, without pores. The studies of FTIR and thermal analysis corroborate the presence of each of the components in the fibers; the results of the feasibility tests showed encouraging percentages with a viability of 82% after 7 days of direct contact of the HUVEC cells with the membranes. Similarly, cell adhesion assays show the presence of viable and stretched cells on the fibers, the tendency of the cells to position themselves on the fibers and follow this conformation was observed. On the other hand, studies of antimicrobial activity against S. aureus show us that in fibers loaded with clindamycin they have inhibition halos greater than 8 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Vallianou NG, Stratigou T, Tsagarakis S (2018) “Microbiome and diabetes: where are we now ? Diabetes Res Clin Pract 146:11–118. https://doi.org/10.1016/j.diabres.2018.10.008

    Article  CAS  Google Scholar 

  2. Egan AM (2018) What is diabetes ? key points. Medicine 47:1–4. https://doi.org/10.1016/j.mpmed.2018.10.002

    Article  Google Scholar 

  3. Hinchliffe RJ (2019) Foot complications in patients with diabetes. Surg 37:106–111. https://doi.org/10.1016/j.mpsur.2018.12.003

    Article  Google Scholar 

  4. Craven M, Simons Z, De Groot M (2019) Diabetes distress among healthcare providers: a qualitative study. Diabetes Res Clin Pract 150:211–218. https://doi.org/10.1016/j.diabres.2019.03.018

    Article  PubMed  Google Scholar 

  5. Parsa S, Aghamohammadi M, Abazari M (2019) “SC”, Diabetes Metab. Syndr Clin Res Rev 13:1275–1279. https://doi.org/10.1016/j.dsx.2019.02.007

    Article  CAS  Google Scholar 

  6. Ye K, Liu D, Kuang H, Cai J, Chen W, Sun B, **a L, Fang B, Morsi Y, Mo X (2019) Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J Colloid Interf Sci 15:625–636. https://doi.org/10.1016/j.jcis.2018.09.071

    Article  CAS  Google Scholar 

  7. Foraida ZI, Kamaldinov T, Nelson DA, Larsen M, Castracane J (2017) Elastin-PLGA hybrid electrospun nanofiber scaffolds for salivary epithelial cell self-organization and polarization. Acta Biomater 62:116–127. https://doi.org/10.1016/j.actbio.2017.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. ** G, He R, Sha B, Li W, Qing H, Teng R, Xu F (2018) Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. Mater Sci Eng C 92:995–1005. https://doi.org/10.1016/j.msec.2018.06.065

    Article  CAS  Google Scholar 

  9. He FL, Li D, He J, Liu Y, Ahmad F, Liu Y, Deng X, Ye Y, Yin D (2018) A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning. Mater Sci Eng C 86:18–27. https://doi.org/10.1016/j.msec.2017.12.016

    Article  CAS  Google Scholar 

  10. Gutiérrez-Sánchez M, Escobar-Barrios VA, Pozos-Guillén A, Escobar-García DM (2019) RGD-functionalization of PLA/starch scaffolds obtained by electrospinning and evaluated in vitro for potential bone regeneration. Mater Sci Eng C 96:798–806. https://doi.org/10.1016/j.msec.2018.12.003

    Article  CAS  Google Scholar 

  11. Ye K, Liu D, Kuang H, Cai J, Chen W, Sun B, **a L, Fang B, Morsi Y, Mo X (2019) Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J Colloid Interface Sci 534:625–636. https://doi.org/10.1016/j.jcis.2018.09.071

    Article  CAS  PubMed  Google Scholar 

  12. Hall I, Paladino E, Szabó P, Brozio S, Hall P, Oseghale C, Passarelli M, Moung S, Black R, Wilson C, Zelkó R, Lamprou D (2017) Electrospun collagen-based nanofibres: a sustainable material for improved antibiotic utilisation in tissue engineering applications. Int J Pharm 531:67–79. https://doi.org/10.1016/j.ijpharm.2017.08.071

    Article  CAS  PubMed  Google Scholar 

  13. Séon-Lutz M, Couffin AC, Vignoud S, Schlatter G, Hébraud A (2019) Electrospinning in water and in situ crosslinking of hyaluronic acid/yclodextrin nanofibers: Towards wound dressing with controlled drug release. Carbohydr Polym 207:276–287. https://doi.org/10.1016/j.carbpol.2018.11.085

    Article  CAS  PubMed  Google Scholar 

  14. Liu X, Yang Y, Yu D, Zhu M, Zhao M, Williams G (2019) Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chem Eng J 356:886–894. https://doi.org/10.1016/j.cej.2018.09.096

    Article  CAS  Google Scholar 

  15. Yang G, Li J, Yu D, He M, Yang J, Williams G (2017) Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning. Acta Biomater 53:233–241. https://doi.org/10.1016/j.actbio.2017.01.069

    Article  CAS  PubMed  Google Scholar 

  16. Kabay G, Meydan A, Can G, Demirci C, Mutlu M (2017) Controlled release of a hydrophilic drug from electrospun amyloid-like protein blend nanofibers. Mater Sci Eng C 81:271–279. https://doi.org/10.1016/j.msec.2017.08.003

    Article  CAS  Google Scholar 

  17. Tan Y, Lao L, **ong G, Venkatraman S (2018) Controlled-release nanotherapeutics: State of translation. J Control Release 284:39–48. https://doi.org/10.1016/j.jconrel.2018.06.014

    Article  CAS  PubMed  Google Scholar 

  18. Chen S, Li R, Li X, **e J (2018) Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv Drug Deliv Rev 132:188–213. https://doi.org/10.1016/j.addr.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  19. Zhua L-F, Chena X, Ahmadc Z, Lia JS, Changa MW (2019) Engineering of Ganodermalucidum polysaccharide loaded polyvinyl alcohol nanofibers for biopharmaceutical delivery. J Drug Deliv Sci Tec 50:208–216. https://doi.org/10.1016/j.jddst.2019.01.032

    Article  CAS  Google Scholar 

  20. Aadil K, Nathani A, Sharma Ch, Lenka N, Gupta P (2019) Investigation of poly(vinyl) alcohol-gellan gum based nanofiber as scaffolds for tissue engineering applications. J Drug Deliv Sci Tec 54:101276. https://doi.org/10.1016/j.jddst.2019.101276

    Article  CAS  Google Scholar 

  21. Yan E, Jiang J, Yang X, Fan L, Wang Y, An Q, Zhang Z, Lu B, Wang D, Zhang D (2020) pH-sensitive core-shell electrospun nanofibers based on polyvinyl alcohol/ polycaprolactone as a potential drug delivery system for the chemotherapy against cervical cancer. J Drug Deliv Sci Tec 55:101455. https://doi.org/10.1016/j.jddst.2019.101455

    Article  CAS  Google Scholar 

  22. Pankongadisaka P, Sangklina S, Chuysinuanb P, Suwantonga O, Supaphold P (2019) The use of electrospun curcumin-loaded poly(L-lactic acid) fiber mats as wound dressing materials. J Drug Deliv Sci Tec 53:101121. https://doi.org/10.1016/j.jddst.2019.06.018

    Article  CAS  Google Scholar 

  23. Zhang D, Lia L, Shan Y, **ong J, Hu Z, Zhang Y, Gaoa J (2019) In vivo study of silk fibroin/gelatin electrospun nanofiber dressing loaded with astragaloside IV on the effect of promoting wound healing and relieving scar. J Drug Deliv Sci Tec 52:272–328. https://doi.org/10.1016/j.jddst.2019.04.021

    Article  CAS  Google Scholar 

  24. Bhardwaj N, Kundu SC (2010) Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  25. Tian D, He JH (2018) Macromolecular electrospinning: Basic concept and preliminary experiment. Results Phys 11:740–742. https://doi.org/10.1016/j.rinp.2018.10.042

    Article  Google Scholar 

  26. Haider A, Haider S, Kang IK (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11:1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015

    Article  CAS  Google Scholar 

  27. Topuz F, Uyar T (2019) Electrospinning of nanocomposite nanofibers from cyclodextrin and laponite. Compos Commun 12:33–38. https://doi.org/10.1016/j.coco.2018.12.002

    Article  Google Scholar 

  28. Hu X, Liu S, Zhou G, Huang Y, **e Z, **g X (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21. https://doi.org/10.1016/j.jconrel.2014.04.018

    Article  CAS  PubMed  Google Scholar 

  29. Cisquella-Serra A, Magnani M, Gual-Mosegui Á, Holmberg S, Madou M, Gamero-Castaño M (2019) Study of the electrostatic jet initiation in near-field electrospinning. J Colloid Interface Sci 543:106–113. https://doi.org/10.1016/j.jcis.2019.02.041

    Article  CAS  PubMed  Google Scholar 

  30. Lim L-T, Mendes AC, Chronakis IS (2019) Electrospinning and electrospraying technologies for food applications. Elsevier Inc., New York

    Book  Google Scholar 

  31. Kyselica R, Enikov ET, Anton R (2019) Electrospinning under lateral electrostatic control in ambient atmosphere. J Electrostat 98:75–81. https://doi.org/10.1016/j.elstat.2019.02.006

    Article  CAS  Google Scholar 

  32. Soares R, Siqueira N, Prabhakaram M (2018) Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mater Sci Eng C 92:969–982. https://doi.org/10.1016/j.msec.2018.08.004

    Article  CAS  Google Scholar 

  33. Aydogdu A, Yildiz E, Ayhan Z, Aydogdu Y, Sumnu G, Sahin S (2019) Nanostructured Poly(lactic acid)/Soy Protein/HPMC films by electrospinning for potential applications in food industry. Eur Polym J 112:477–486. https://doi.org/10.1016/j.eurpolymj.2019.01.006

    Article  CAS  Google Scholar 

  34. Kalantari K, Afifi AM, Jahangirian H, Webster TJ (2019) Biomedical applications of chitosan electrospun nanofibers as a green polymer – Review. Carbohydr Polym 207:588–600. https://doi.org/10.1016/j.carbpol.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  35. Aguirre-chagala YE, Altuzar V, León-sarabia E, Tinoco-magaña JC, Yañez-limón JM, Mendoza-barrera C (2017) Physicochemical properties of polycaprolactone/collagen/elastin nano fi bers fabricated by electrospinning. Mater Sci Eng C 76:897–907. https://doi.org/10.1016/j.msec.2017.03.118

    Article  CAS  Google Scholar 

  36. Alharbi HF, Luqman M, Fouad H, Khalil KA, Alharthi NH (2018) Viscoelastic behavior of core-shell structured nanofibers of PLA and PVA produced by coaxial electrospinning. Polym Test 67:136–143. https://doi.org/10.1016/j.polymertesting.2018.02.026

    Article  CAS  Google Scholar 

  37. Chen P, Liu L, Pan J, Mei J, Li C, Zheng Y (2018) Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nano fibers for bone tissue engineering. Mater Sci Eng C 97:325–335. https://doi.org/10.1016/j.msec.2018.12.027

    Article  CAS  Google Scholar 

  38. Merkle V, Tran P, Hutchinson M, Ammann K, DeCook K, Wu X, Slepian M (2015) Core–shell PVA/gelatin electrospun nanofibers promote human umbilical vein endothelial cell and smooth muscle cell proliferation and migration. Acta Biomater 27:77–87. https://doi.org/10.1016/j.actbio.2015.08.044

    Article  CAS  PubMed  Google Scholar 

  39. Puchalski M, Kwolek S, Szparaga G, Chrzanowski M, Krucinska I (2017) Investigation of the Influence of PLA Molecular Structure on the Crystalline Forms (α’ and α) and Mechanical Properties of Wet Spinning Fibres. Polymers 9:1–13. https://doi.org/10.3390/polym9010018

    Article  CAS  Google Scholar 

  40. Kierzkowska M, Majewska A, Szymanek-Majchrzak K, Sawicka- Grzelak A, Mlynarczyk A, Mlynarczyk G (2018) In Vitro Effect of Clindamycin against Bacteroides and Parabacteroides Isolates in Poland. J Glob Antimicrob Resist 13:49–52. https://doi.org/10.1016/j.jgar.2017.11.001

    Article  PubMed  Google Scholar 

  41. Amjadi S, Emaminia S, Heyat Davudian S, Pourmohammad S, Hamishehkar H, Roufegarinejad L (2019) Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles. Carbohydr Polym 216:376–384. https://doi.org/10.1016/j.carbpol.2019.03.062

    Article  CAS  PubMed  Google Scholar 

  42. Takeru H (1961) Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci 50:874–875. https://doi.org/10.1002/jps.2600501018

    Article  Google Scholar 

  43. Peppas N, Gurny R, Doelker E, Buri P (1980) Modelling of drug diffusion through swellable polymeric systems. J Membr Sci 7:241–253. https://doi.org/10.1016/S0376-7388(00)80471-8

    Article  CAS  Google Scholar 

  44. Peppas N, Colombo P (1997) Analysis of drug release behavior from swellable polymer carriers using the dimensionality index. J Control Releas 45:35–40. https://doi.org/10.1016/S0168-3659(96)01542-8

    Article  CAS  Google Scholar 

  45. Bonilla-Hernández M, Zapata-Catzin GA, Castillo-Cruz OD, Vargas-Coronado RF, Cervantes-Uc JM, Xool-Tamayo JF, Borges-Argaez R, Hernández-Baltazar E, Cauich-Rodríguez JV (2021) Synthesis and characterization of metformin-pluronic based polyurethanes for controlled drug delivery. Int J Polym Mater Polym Biomater 70(9):656–667. https://doi.org/10.1080/00914037.2020.1740996

    Article  CAS  Google Scholar 

  46. González-Pérez J, Vargas-Arispuro I, Aispuro-Hernández E, Aguilar-Gil C, Aguirre-Guzmán Y, Castillo A, Hernández-Mendoza A, Ayala-Zavala JF, Martínez-Téllez M (2019) Potential Control of Foodborne Pathogenic Bacteria by 0Pediococcus pentosaceus and Lactobacillus graminis Isolated from Fresh Vegetables. Microbiol Biotechnol Lett 47:183–194. https://doi.org/10.4014/mbl.1808.08014

    Article  CAS  Google Scholar 

  47. Sangnim T, Limmatuapirat S, Nunthanid J, Sriamornsak P, Sttikijyothin W, Wannachaiyasit S, Huanbutta K (2018) Design and characterization of clindamycin-loaded nanofiber patches composed of polyvinyl alcohol and tamarind seed gum and fabricated by electrohydrodynamic atomization. Asian J Pharm Sci 13:450–458. https://doi.org/10.1016/j.ajps.2018.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  48. Patel P, Patel P (2015) Formulation and evaluation of clindamycin HCL in situ gel for vaginal application. Int J Pharm Investig 5:50–56. https://doi.org/10.4103/2230-973X.147233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Silva R, Singh R, Sarker B, Papageorgiou D, Juhasz-Bortuzzo J, Cicha J, Kaschta J, Schubert D, Chrissafis K, Detsh R, Boccaccini A (2018) Hydrogel matrices based on elastin and alginate for tissue engineering applications. Int J Biol Macromol 114:614–625. https://doi.org/10.1016/j.ijbiomac.2018.03.091

    Article  CAS  PubMed  Google Scholar 

  50. Zhou Y, Lei L, Yang B, Li J, Ren J (2018) Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites. Polym Test 68:34–38. https://doi.org/10.1016/j.polymertesting.2018.03.044

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Y. López-Peña.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo-Ortega, M.M., López-Peña, I.Y., Rodríguez-Félix, D.E. et al. Clindamycin-loaded nanofibers of polylactic acid, elastin and gelatin for use in tissue engineering. Polym. Bull. 79, 5495–5513 (2022). https://doi.org/10.1007/s00289-021-03734-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03734-6

Navigation