Log in

Thermal characterization by DSC and TGA analyses of PVA hydrogels with organic and sodium MMT

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyvinyl alcohol (PVA) hydrogels were prepared by a cyclic freezing–thawing technique without any cross-linker agent, using PVA and Maghnite water dispersion with different ratios. The obtained results have shown a higher thermal stability of samples with sodium than with alkylammonium Maghnite. Furthermore, thermal stability was maximum at the lowest investigated Maghnite/PVA ratio, but higher than for the pure PVA at all the investigated compositions. DSC analysis has shown both a low crystal degree and a low heat capacity jump at the glass transition temperature for samples with high Maghnite content. This phase does not seem to depend on the kind of cations, sodium or alkylammonium into the gallery of the clay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hassan CM, Trakampan P, Peppas NA (2002) Water solubility characteristics of poly(vinyl alcohol) and gels prepared by freezing/thawing processes. In: Amjad Z (ed) Water soluble polymers. Springer, Boston

    Google Scholar 

  2. Prashant PK, Vivek BR, Deepashree ND, Pranav PP (2012) Hydrogels as a drug delivery system and applications. Int J Pharm Sci 4(1):1–7

    Google Scholar 

  3. Muppalaneni S, Omidian H (2013) Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs 2:3

    Article  Google Scholar 

  4. Paranhos M, Bluma Soares G, Renata Oliveira N, Luiz Pessan A (2007) Poly(vinylalcohol)/clay-based nanocomposite hydrogels: swelling behavior and characterization. Macromol Mater Eng 292(5):620–626

    Article  CAS  Google Scholar 

  5. Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33:2472–2479

    Article  CAS  Google Scholar 

  6. Peppas NA, Stauffer SR (1991) Reinforced uncrosslinked poly(vinyl alcohol) gels produced by cyclic freezing-thawing processes. J Control Release 16:305–310

    Article  CAS  Google Scholar 

  7. Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5:2054–2130

    Article  CAS  Google Scholar 

  8. Lakouraj MM, Tajbakhsh M, Mokhtary M (2005) Synthesis and swelling characterization of cross-linked PVP/PVA hydrogels. Iran Polym J 14(12):1022–1030

    CAS  Google Scholar 

  9. Gonzalez JS, Maiolo AS, Hoppe CE, Alvarez VA (2012) Composite gels based on poly(vinyl alcohol) for biomedical Uses. Proc Mat Sci 1:483–490

    CAS  Google Scholar 

  10. Kokabi M, Sirousazar M, Hassan ZM (2007) PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J 43(3):773–781

    Article  CAS  Google Scholar 

  11. Sirousazar M, Kokabi M, Hassan ZM (2012) Swelling behavior and structural characteristics of polyvinyl alcohol/montmorillonite nanocomposite hydrogels. J Appl Polym Sci 123(1):50–58

    Article  CAS  Google Scholar 

  12. Karimi A, Wan Daud WMA (2017) Materials, preparation, and characterization of PVA/MMT nanocomposite hydrogels. Rev Polym Compos 38(6):1086–1102

    Article  CAS  Google Scholar 

  13. Noor S, Kokabia M, Hassan ZM (2015) Nanoclay enhanced the mechanical properties of poly(vinylalcohol)/chitosan/montmorillonite nanocomposite hydrogel as wound dressing. Proc Mat Sci 11:152–156

    Google Scholar 

  14. Reguieg F, Sahli N, Belbachir M (2017) Hydrogel composite of poly(vinylalcool) with unmodified montmorillonite. Curr Chem Lett 6:69–76

    Article  Google Scholar 

  15. Karimi A, Wan Daud WMA (2016) Comparison the properties of PVA/Na + MMT nanocomposite hydrogels prepared by physical and physicochemical crosslinking. Polym Compos 37(3):897–906

    Article  CAS  Google Scholar 

  16. Sirousazar M, Kokabi M, Hassan ZM, Bahramian AR (2012) Polyvinyl alcohol/Na-montmorillonite nanocomposite hydrogels prepared by freezing–thawing method: structural, mechanical, thermal, and swelling properties. J Macromol Sci B 51(7):1335–1350

    Article  CAS  Google Scholar 

  17. Gu Y, Ye L (2009) Study on the polyvinylalcohol/montmorillonite composite hydrogel. Polym Plast Technol Eng 48(6):595–601

    Article  CAS  Google Scholar 

  18. Sirousazar M, Kokabi M, Hassan ZM (2011) In vivo and cytotoxic assays of a poly(vinyl alcohol)/clay nanocomposite hydrogel wound dressing. J Biomater Sci Polym Ed 22(8):1023–1033

    Article  CAS  Google Scholar 

  19. Paranhos CM, Soares BG, Machado JC, Windmoller D, Pessa LA (2007) Microstructure and free volume evaluation of poly(vinyl alcohol) nanocomposite hydrogels. Eur Polym J 43:4882–4890

    Article  CAS  Google Scholar 

  20. Belbachir M, Bensaoula A (2006) Composition and method for catalysis using bentonites. US 7094823 B2

  21. Reguieg F, Sahli N, Belbachir M, Lutz PJ (2006) One-step synthesis of bis-macromonomers of poly(1,3-dioxolane) catalyzed by maghnite-H. J App Polym Sci 99(6):3147–3152

    Article  CAS  Google Scholar 

  22. Bensaada N, Ayat M, Meghabar R, Belbachir M (2015) The synthesis of polystyrene with a new chemical approach. Curr Chem Lett 4(2):55–60

    Article  Google Scholar 

  23. Harrane A, Belbachir M (2007) Synthesis of biodegradable polycaprolactone/montmorillonite nanocomposites by direct in situ polymerization catalysed by exchanged clay. Macromol Symp 247(1):379–384

    Article  CAS  Google Scholar 

  24. Reguieg F, Sahli N, Belbachir M (2015) Nanocomposite hydrogels based on water soluble polymer and montmorillonite-Na+. Orient J Chem 31(3):1645–1657

    Article  CAS  Google Scholar 

  25. Ricciardi R, Auriemma F, De Rosa C, Lauprêtre F (2004) X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 37(5):1921–1927

    Article  CAS  Google Scholar 

  26. Passaglia E, Bertoldo M, Ceriegi S, Sulcis R, Narducci P, Conzatti L (2008) Oxygen and water vapor barrier properties of MMT nanocomposites from low density polyethylene or EPM with grafted succinic groups. J Nanosci Nanotechnol 8(4):1690–1699

    Article  CAS  Google Scholar 

  27. Chang J, Jang T, Ihn KJ, Lee W, Sur GS (2003) Poly (vinyl alcohol) nanocomposites with different clays: pristine clays and organoclays. J App Polym Sci 90:3208–3214

    Article  CAS  Google Scholar 

  28. ** Y, Martens W, He H, Frost RL (2005) Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium bromide. J Therm Anal Calorim 81:91–97

    Article  CAS  Google Scholar 

  29. Li CP, Hou TT, Vongsvivut J, Li YZ, She XD, She FH et al (2015) Simultaneous crystallization and decomposition of PVA/MMT composites during non-isothermal process. Thermochim Acta 618:26–35

    Article  CAS  Google Scholar 

  30. Holland BJ, Hay JN (2001) The thermal degradation of poly(vinyl alcohol). Polymer 42(16):6775–6783

    Article  CAS  Google Scholar 

  31. Endo R, Amiya S, Hikosaka M (2003) Conditions for melt crystallization without thermal degradation and equilibrium melting temperature of atactic poly(vinyl alcohol). J Macromol Sci B 42(3–4):793–820

    Article  Google Scholar 

  32. Tubbs RK (1965) Melting point and heat of fusion of poly(vinyl alcohol). J Polym Sci Part A 3(12):4181–4189

    CAS  Google Scholar 

  33. Peppas NA, Hansen PJ (1982) Crystallization kinetics of poly(vinyl alcohol). J Appl Polym Sci 27(12):4787–4797

    Article  CAS  Google Scholar 

  34. Hickey AS, Peppas NA (1995) Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing techniques. J Memb Sci 107:229–237

    Article  CAS  Google Scholar 

  35. Thomas D, Cebe P (2017) Self-nucleation and crystallization of polyvinyl alcohol. J Therm Anal Calorim 127(1):885–894

    Article  CAS  Google Scholar 

  36. Schick CA, Wurm MA (2001) Vitrification and devitrification of the rigid amorphous fraction of semicrystalline polymers revealed from frequency-dependent heat capacity. Colloid Polym Sci 279:800–806

    Article  CAS  Google Scholar 

  37. Signori F, Pelagaggi M, Bronco S, Righetti MC (2012) Amorphous/crystal and polymer/filler interphases in biocomposites from poly(butylene succinate). Thermochim Acta 543:74–81

    Article  CAS  Google Scholar 

  38. Wurm MA, Kretzschmar IB, Pospiech D, Schick CA (2010) Retarded crystallization in polyamide/layered silicates nanocomposites caused by an immobilized interphase. Macromolecules 43(3):1480–1487

    Article  CAS  Google Scholar 

  39. Prevosto D, Lucchesi M, Bertoldo M, Passaglia E, Ciardelli F, Rolla P (2010) Interfacial effects on the dynamics of ethylene-propylene copolymer nanocomposite with inorganic clays. J Non-Cryst Solids 356(11–17):568–573

    Article  CAS  Google Scholar 

  40. Passaglia E, Bertoldo M, Ciardelli F, Prevosto D, Lucchesi M (2008) Evidences of macromolecular chains confinement of ethylene-propylene copolymer in organophilic montmorillonite nanocomposites. Eur Polym J 44(5):1296–1308

    Article  CAS  Google Scholar 

  41. Peppas N (1977) Infrared spectroscopy of semicrystalline poly(vinylalcohol) networks. Makcromol Chem 178(2):595–601

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author thanks Pr. A. Bendiaballah for his help in English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatiha Reguieg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reguieg, F., Ricci, L., Bouyacoub, N. et al. Thermal characterization by DSC and TGA analyses of PVA hydrogels with organic and sodium MMT. Polym. Bull. 77, 929–948 (2020). https://doi.org/10.1007/s00289-019-02782-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02782-3

Navigation