Log in

Controlled radical polymerization with polyolefin macroinitiator: a convenient and versatile approach to polyolefin-based block and graft copolymers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This paper introduces the new synthetic methodology of polyolefin-based block and graft copolymers with polar segments [e.g., polystyrene and poly(meth)acrylates]. Various brominated polyolefins were prepared by bromination of polyolefins with N-bromosuccinimide. The resulting brominated polyolefins were able to initiate the controlled radical polymerization of polar monomers, such as methyl methacrylate, ethyl acrylate, t-butyl acrylate, styrene and 2-(dimethylamino)ethyl acrylate, using a CuBr/N,N,N′,N″,N″-pentamethyldiethylenetriamine catalyst system, leading to a variety of polyolefin-based copolymers with a different content of the corresponding polar segment. Because of the accessible synthesis of polyolefin macroinitiators, this synthetic methodology is expected to result in the preparation of a wide range of polyolefin-based block and graft copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Moad G (1999) The synthesis of polyolefin graft copolymers by reactive extrusion. Prog Polym Sci 24:81–142. doi:10.1016/S0079-6700(98)00017-3

    Article  CAS  Google Scholar 

  2. Rätzsch M, Arnold M, Borsig E, Bucka H, Reichelt N (2002) Radical reactions on polypropylene in the solid state. Prog Polym Sci 27:1195–1282. doi:10.1016/S0079-6700(02)00006-0

    Article  Google Scholar 

  3. Yanjarappa MJ, Sivaram S (2002) Recent developments in the synthesis of functional poly(olefin)s. Prog Polym Sci 27:1347–1398. doi:10.1016/S0079-6700(02)00011-4

    Article  CAS  Google Scholar 

  4. Schellekens MAJ, Klumperman B (2000) Synthesis of polyolefin block and graft copolymers. J Macromol Sci Rev Macromol Chem Phys C40:167–192

    Article  CAS  Google Scholar 

  5. Chung TC (2001) Synthesis of functional polyolefin copolymers with graft and block structures. Prog Polym Sci 27:39–85. doi:10.1016/S0079-6700(01)00038-7

    Article  Google Scholar 

  6. Dong JY, Hu Y (2006) Design and synthesis of structurally well-defined functional polyolefins via transition metal-mediated olefin polymerization chemistry. Coord Chem Rev 250:47–65. doi:10.1016/j.ccr.2005.05.008

    Article  CAS  Google Scholar 

  7. Lopez RG, D’Agosto F, Boisson C (2007) Synthesis of well-defined polymer architectures by successive catalytic olefin polymerization and living/controlled polymerization reactions. Prog Polym Sci 32:419454. doi:10.1016/j.progpolymsci.2007.01.004

    Google Scholar 

  8. Kawahara N, Saito J, Matsuo S, Kaneko H, Matsugi T, Kashiwa N (2008) Polymer hybrids based on polyolefins––syntheses, structures, and properties. Adv Polym Sci 217:79–119. doi:10.1007/12_2008_136

    CAS  Google Scholar 

  9. Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living radical polymerization. Chem Rev 101:3689–3746

    Article  CAS  Google Scholar 

  10. Matyjaszewski K, **a J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990. doi:10.1021/cr940534g

    Article  CAS  Google Scholar 

  11. Matsugi T, Kojoh S, Kawahara N, Matsuo S, Kaneko S, Kashiwa N (2003) Synthesis and morphology of polyethylene-block-poly(methyl methacrylate) through the combination of metallocene catalysis with living radical polymerization. J Polym Sci Part A: Polym Chem 41:3965–3973. doi:10.1002/pola.10991

    Article  CAS  Google Scholar 

  12. Inoue Y, Matyjaszewski K (2004) Preparation of polyethylene block copolymers by a combination of postmetallocene catalysis of ethylene polymerization and atom transfer radical polymerization. J Polym Sci Part A: Polym Chem 42:496–504. doi:10.1002/pola.10876

    Article  CAS  Google Scholar 

  13. Inoue Y, Matsugi T, Kashiwa N, Matyjaszewski K (2004) Graft copolymers from linear polyethylene via atom transfer radical polymerization. Macromolecules 37:3651–3658. doi:10.1021/ma0359887

    Article  CAS  Google Scholar 

  14. Kaneko H, Matsuo S, Kawahara N, Saito J, Matsugi T, Kashiwa N (2007) Synthesis and mechanical properties of polypropylene-based polymer hybrids via controlled radical polymerization. Macromol Symp 260:9–14. doi:10.1002/masy.200751402

    Article  CAS  Google Scholar 

  15. Matyjaszewski K, Teodorescu M, Miller PJ, Peterson ML (2000) Graft copolymers of polyethylene by atom transfer radical polymerization. J Polym Sci Part A: Polym Chem 38:2440–2448. doi:10.1002/1099-0518

    Article  CAS  Google Scholar 

  16. Liu S, Sen A (2001) Synthesis of novel linear polyethene-based graft copolymers by atom transfer radical polymerization. Macromolecules 34:1529–1532. doi:10.1021/ma001682d

    Article  CAS  Google Scholar 

  17. Hwu JM, Chang MJ, Lin JC, Cheng HY, Jiang GJ (2005) Synthesis and application of functional polyethylene graft copolymers by atom transfer radical polymerization. J Organomet Chem 690:6300–6308. doi:10.1016/j.jorganchem.2005.04.043

    Article  CAS  Google Scholar 

  18. Cao C, Zou J, Dong JY, Hu Y, Chung TC (2005) Synthesis of polypropylene graft copolymers by the combination of a polypropylene copolymer containing pendant vinylbenzene groups and atom transfer radical polymerization. J Polym Sci Part A: Polym Chem 43:429–437. doi:10.1002/pola.20509

    Article  CAS  Google Scholar 

  19. Kaneko H, Saito J, Kawahara N, Matsuo S, Matsugi T, Kashiwa N (2008) Synthesis and characterization of polypropylene-based polymer hybrids linking poly(methyl methacrylate) and poly(2-hydroxyethyl methacrylate). Polymer 49:4576–4584

    Article  CAS  Google Scholar 

  20. Kaneko H, Saito J, Kawahara N, Matsuo S, Matsugi T, Kashiwa N (2009) Synthesis and characterization of polypropylene-based block copolymers possessing polar segments via controlled radical polymerization. J Polym Sci Part A: Polym Chem 47:812–823. doi:10.1002/pola.23198

    Article  CAS  Google Scholar 

  21. Nakagawa Y, Matyjaszewski K (1998) Synthesis of well-defined allyl end-functionalized polystyrene by atom transfer radical polymerization with an allyl halide initiator. Polym J 30:138–141. doi:10.1295/polymj.30.138

    Article  CAS  Google Scholar 

  22. Jakubowski W, Tsarevsky NV, Higashihara T, Faust R, Matyjaszewski K (2008) Allyl halide (macro)initiators in ATRP: synthesis of block copolymers with polyisobutylene segments. Macromolecules 41:2318–2323. doi:10.1021/ma7027837

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichi Sugimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugimoto, R., Kaneko, H., Saito, J. et al. Controlled radical polymerization with polyolefin macroinitiator: a convenient and versatile approach to polyolefin-based block and graft copolymers. Polym. Bull. 71, 1421–1431 (2014). https://doi.org/10.1007/s00289-014-1132-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1132-3

Keywords

Navigation