Log in

Extent of Virulence and Antibiotic Resistance Genes in Helicobacter pylori and Campylobacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Helicobacter pylori, a member of the clade campylobacteria, is the leading cause of chronic gastritis and gastric cancer. Virulence and antibiotic resistance of H. pylori are of great concern to public health. However, the relationship between virulence and antibiotic resistance genes in H. pylori in relation to other campylobacteria remains unclear. Using the virulence and comprehensive antibiotic resistance databases, we explored all available 354 complete genomes of H. pylori and compared it with 90 species of campylobacteria for virulence and antibiotic resistance genes/proteins. On average, H. pylori had 129 virulence genes, highest among Helicobacter spp. and 71 antibiotic resistance genes, one of the lowest among campylobacteria. Just 2.6% of virulence genes were shared by all campylobacterial members, whereas 9.4% were unique to H. pylori. The cytotoxin-associated genes (cags) seemed to be exclusive to H. pylori. Majority of the isolates from Asia and South America were cag2-negative and many antibiotic resistance genes showed isolate-specific patterns of occurrence. Just 15 (8.8%) antibiotic resistance genes, but 103 (66%) virulence genes including 25 cags were proteomically identified in H. pylori. Arcobacterial members showed large variation in the number of antibiotic resistance genes and there was a positive relation with the genome size. Large repository of antibiotic resistance genes in campylobacteria and a unique set of virulence genes might have important implications in sha** the course of virulence and antibiotic resistance in H. pylori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The sequence data used in this work were obtained from NCBI. The relevant derived data are given in the supplemental result tables accessible at https://osf.io/rmd9y/.

References

  1. Hooi JKY, Lai WY, Ng WK et al (2017) Global prevalence of Helicobacter pylori infection: Systematic review and meta-analysis. Gastroenterol 153:P420–P429. https://doi.org/10.1053/j.gastro.2017.04.022

    Article  Google Scholar 

  2. Suerbaum S, Michetti P (2002) Helicobacter pylori infection. N Engl J Med 347:1175–1186. https://doi.org/10.1056/NEJMra020542

    Article  CAS  PubMed  Google Scholar 

  3. Etemadi A, Safiri S, Sepanlou SG et al (2020) The global, regional, and national burden of stomach cancer in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease study 2017. Lancet Gastroenterol Hepatol 5:42–54. https://doi.org/10.1016/S2468-1253(19)30328-0

    Article  Google Scholar 

  4. Chiang T-H, Chang W-J, Chen SL-S et al (2021) Mass eradication of Helicobacter pylori to reduce gastric cancer incidence and mortality: A long-term cohort study on Matsu Islands. Gut 70:243–250. https://doi.org/10.1136/gutjnl-2020-322200

    Article  CAS  PubMed  Google Scholar 

  5. Choi IJ, Kim CG, Lee JY et al (2020) Family history of gastric cancer and Helicobacter pylori treatment. N Engl J Med 382:427–436. https://doi.org/10.1056/NEJMoa1909666

    Article  PubMed  Google Scholar 

  6. Malfertheiner P, Megraud F, O’Morain CA et al (2017) Management of Helicobacter pylori infection—the Maastricht V/Florence Consensus Report. Gut 66:6–30. https://doi.org/10.1136/gutjnl-2016-312288

    Article  CAS  PubMed  Google Scholar 

  7. Pasceri V, Cammarota G, Patti G et al (1998) Association of virulent Helicobacter pylori strains with ischemic heart disease. Circulation 97:1675–1679. https://doi.org/10.1161/01.CIR.97.17.1675

    Article  CAS  PubMed  Google Scholar 

  8. Hu Y, Zhu Y, Lu N-H (2017) Novel and effective therapeutic regimens for Helicobacter pylori in an era of increasing antibiotic resistance. Front Cell Infect Microbiol 7:168. https://doi.org/10.3389/fcimb.2017.00168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Savoldi A, Carrara E, Graham DY et al (2018) Prevalence of antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis in World Health Organization regions. Gastroenterol 155:1372-1382.e17. https://doi.org/10.1053/j.gastro.2018.07.007

    Article  Google Scholar 

  10. Tacconelli E, Carrara E, Savoldi A et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

    Article  PubMed  Google Scholar 

  11. Gingold-Belfer R, Niv Y, Schmilovitz-Weiss H et al (2021) Susceptibility-guided versus empirical treatment for Helicobacter pylori infection: a systematic review and meta-analysis. J Gastroenterol Hepatol 36:2649–2658. https://doi.org/10.1111/jgh.15575

    Article  PubMed  Google Scholar 

  12. Megraud F, Bruyndonckx R, Coenen S et al (2021) Helicobacter pylori resistance to antibiotics in Europe in 2018 and its relationship to antibiotic consumption in the community. Gut 70:1815–1822. https://doi.org/10.1136/gutjnl-2021-324032

    Article  CAS  PubMed  Google Scholar 

  13. Nestegard O, Moayeri B, Halvorsen F-A et al (2022) Helicobacter pylori resistance to antibiotics before and after treatment: Incidence of eradication failure. PLoS ONE 17:e0265322. https://doi.org/10.1371/journal.pone.0265322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shu X, Ye D, Hu C et al (2022) Alarming antibiotics resistance of Helicobacter pylori from children in Southeast China over 6 years. Sci Rep 12:17754. https://doi.org/10.1038/s41598-022-21661-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brennan DE, Dowd C, O’Morain C et al (2018) Can bacterial virulence factors predict antibiotic resistant Helicobacter pylori infection? World J Gastroenterol 24:971–981. https://doi.org/10.3748/wjg.v24.i9.971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. da Silva Benigno TG, Ribeiro Junior HL, de Azevedo OGR et al (2022) Clarithromycin-resistant H. pylori primary strains and virulence genotypes in the Northeastern region of Brazil. Revista do Instituto de Medicina Tropical de São Paulo 64:e47. https://doi.org/10.1590/s1678-9946202264047

    Article  CAS  Google Scholar 

  17. Hosseini RS, Rahimian G, Shafigh MH et al (2021) Correlation between clarithromycin resistance, virulence factors and clinical characteristics of the disease in Helicobacter pylori infected patients in Shahrekord. Southwest Iran AMB Express 11:147. https://doi.org/10.1186/s13568-021-01310-9

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Wang S, Yang F et al (2022) Antimicrobial resistance patterns and genetic elements associated with the antibiotic resistance of Helicobacter pylori strains from Shanghai. Gut Pathogens 14:14. https://doi.org/10.1186/s13099-022-00488-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Igwaran A, Okoh AI (2019) Human campylobacteriosis: a public health concern of global importance. Heliyon 5:e02814. https://doi.org/10.1016/j.heliyon.2019.e02814

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM (2015) Global epidemiology of Campylobacter infection. Clin Microbiol Rev 28:687–720. https://doi.org/10.1128/CMR.00006-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferreira EO, Lagacé-Wiens P, Klein J (2022) Campylobacter concisus gastritis masquerading as Helicobacter pylori on gastric biopsy. Helicobacter 27:e12864. https://doi.org/10.1111/hel.12864

    Article  CAS  PubMed  Google Scholar 

  22. Hlashwayo DF, Sigaúque B, Noormahomed EV et al (2021) A systematic review and meta-analysis reveal that Campylobacter spp. and antibiotic resistance are widespread in humans in sub-Saharan Africa. PLoS ONE 16:e0245951. https://doi.org/10.1371/journal.pone.0245951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. EFSA (2022) The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J 20:7209. https://doi.org/10.2903/j.efsa.2022.7209

    Article  CAS  Google Scholar 

  24. Wang D, Guo Q, Yuan Y, Gong Y (2019) The antibiotic resistance of Helicobacter pylori to five antibiotics and influencing factors in an area of China with a high risk of gastric cancer. BMC Microbiol 19:152. https://doi.org/10.1186/s12866-019-1517-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alcock BP, Raphenya AR, Lau TTY et al (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48:D517–D525. https://doi.org/10.1093/nar/gkz935

    Article  CAS  PubMed  Google Scholar 

  26. Liu B, Zheng D, ** Q et al (2019) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 47:D687–D692. https://doi.org/10.1093/nar/gky1080

    Article  CAS  PubMed  Google Scholar 

  27. Feldgarden M, Brover V, Gonzalez-Escalona N et al (2021) AMRFinderPlus and the reference gene catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci Rep 11:12728. https://doi.org/10.1038/s41598-021-91456-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu B, Pop M (2009) ARDB—antibiotic resistance genes database. Nucleic Acids Res 37:D443–D447. https://doi.org/10.1093/nar/gkn656

    Article  CAS  PubMed  Google Scholar 

  29. Doster E, Lakin SM, Dean CJ et al (2020) MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res 48:D561–D569. https://doi.org/10.1093/nar/gkz1010

    Article  CAS  PubMed  Google Scholar 

  30. Bortolaia V, Kaas RS, Ruppe E et al (2020) ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75:3491–3500. https://doi.org/10.1093/jac/dkaa345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hendriksen RS, Bortolaia V, Tate H et al (2019) Using genomics to track global antimicrobial resistance. Front Public Health 7:242. https://doi.org/10.3389/fpubh.2019.00242

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rao RSP, Ghate SD, Shastry RP et al (2023) Prevalence and heterogeneity of antibiotic resistance genes in Orientia tsutsugamushi and other rickettsial genomes. Microb Pathog 174:105953. https://doi.org/10.1016/j.micpath.2022.105953

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Z, Zhang Q, Wang T et al (2022) Assessment of global health risk of antibiotic resistance genes. Nat Commun 13:1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mootapally C, Mahajan MS, Nathani NM (2021) Sediment plasmidome of the Gulfs of Kathiawar Peninsula and Arabian Sea: insights gained from metagenomics data. Microb Ecol 81:540–548. https://doi.org/10.1007/s00248-020-01587-6

    Article  CAS  PubMed  Google Scholar 

  35. Tamura K, Stecher G, Kumar S (2021) MEGA 11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Agresti A (2018) An introduction to categorical data analysis, 3rd edn. Wiley, New York

    Google Scholar 

  37. Vijaymeena MK, Kavitha K (2016) A survey on similarity measures in text mining. Mach Learn Appl 3:19–28. https://doi.org/10.5121/mlaij.2016.3103

    Article  Google Scholar 

  38. Karlsson R, Thorell K, Hosseini S et al (2016) Comparative analysis of two Helicobacter pylori strains using genomics and mass spectrometry-based proteomics. Front Microbiol 7:1757. https://doi.org/10.3389/fmicb.2016.01757

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kumar S, Schmitt C, Gorgette O et al (2022) Bacterial membrane vesicles as a novel strategy for extrusion of antimicrobial bismuth drug in Helicobacter pylori. MBio 13:e01633-e1722. https://doi.org/10.1128/mbio.01633-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Loh JT, Shum MV, Jossart SD et al (2021) Delineation of the pH-responsive regulon controlled by the Helicobacter pylori ArsRS two-component system. Infect Immun 89:e00597-e620. https://doi.org/10.1128/IAI.00597-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Müller SA, Findeiß S, Pernitzsch SR et al (2013) Identification of new protein coding sequences and signal peptidase cleavage sites of Helicobacter pylori strain 26695 by proteogenomics. J Proteom 86:27–42. https://doi.org/10.1016/j.jprot.2013.04.036

    Article  CAS  Google Scholar 

  42. Müller SA, Pernitzsch SR, Haange SB et al (2015) Stable isotope labeling by amino acids in cell culture based proteomics reveals differences in protein abundances between spiral and coccoid forms of the gastric pathogen Helicobacter pylori. J Proteom 126:34–45. https://doi.org/10.1016/j.jprot.2015.05.011

    Article  CAS  Google Scholar 

  43. Sugiyama N, Miyake S, Lin MH et al (2019) Comparative proteomics of Helicobacter pylori strains reveals geographical features rather than genomic variations. Genes Cells 24:139–150. https://doi.org/10.1111/gtc.12662

    Article  CAS  PubMed  Google Scholar 

  44. Wei S, Li S, Wang J et al (2022) Outer membrane vesicles secreted by Helicobacter pylori transmitting gastric pathogenic virulence factors. ACS Omega 7:240–258. https://doi.org/10.1021/acsomega.1c04549

    Article  CAS  PubMed  Google Scholar 

  45. Censini S, Lange C, **ang Z et al (1996) Cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA 93:14648–14653. https://doi.org/10.1073/pnas.93.25.14648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Collado L, Figueras MJ (2011) Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clin Microbiol Rev 24:174–192. https://doi.org/10.1128/CMR.00034-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pérez-Cataluña A, Salas-Massó N, Diéguez AL et al (2018) Revisiting the taxonomy of the genus Arcobacter: getting order from the chaos. Front Microbiol 9:2077. https://doi.org/10.3389/fmicb.2018.02077

    Article  PubMed  PubMed Central  Google Scholar 

  48. Larsson DGJ, Flach C-F (2022) Antibiotic resistance in the environment. Nat Rev Microbiol 20:257–269. https://doi.org/10.1038/s41579-021-00649-x

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Q, Zhang Z, Lu T et al (2020) Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. Commun Biol 3:737. https://doi.org/10.1038/s42003-020-01468-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Noto JM, Peek RM Jr (2012) The Helicobacter pylori cag pathogenicity island. Methods Mol Biol 921:41–50. https://doi.org/10.1007/978-1-62703-005-2_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hatakeyama M (2017) Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc Jpn Acad B Phys Biol Sci 93:196–219. https://doi.org/10.2183/pjab.93.013

    Article  CAS  Google Scholar 

  52. Yu M, Xu M, Shen Y et al (2023) Hp0521 inhibited the virulence of H. pylori 26,695 strain via regulating CagA expression. Heliyon 9:e17881. https://doi.org/10.1016/j.heliyon.2023.e17881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yuan X-y, Yan J-J, Yang Y-c et al (2017) Helicobacter pylori with East Asian-type cagPAI genes is more virulent than strains with Western-type in some cagPAI genes. Braz J Microbiol 48:218–224. https://doi.org/10.1016/j.bjm.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  54. Geisinger E, Isberg RR (2017) Interplay between antibiotic resistance and virulence during disease promoted by multidrug-resistant bacteria. J Infect Dis 215:S9–S17. https://doi.org/10.1093/infdis/jiw402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abdi SN, Ghotaslou R, Ganbarov K et al (2020) Acinetobacter baumannii efflux pumps and antibiotic resistance. Infect Drug Resist 13:423–434. https://doi.org/10.2147/IDR.S228089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146. https://doi.org/10.1146/annurev.biochem.78.082907.145923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Salini S, Muralikrishnan B, Bhat SG et al (2022) Overexpression of a membrane transport system MSMEG_1381 and MSMEG_1382 confers multidrug resistance in Mycobacterium smegmatis. Preprints 202204.0003.v2. https://doi.org/10.20944/preprints202204.0003.v2.

  58. van Hoek AHAM, Mevius D, Guerra B et al (2011) Acquired antibiotic resistance genes: an overview. Front Microbiol 2:203. https://doi.org/10.3389/fmicb.2011.00203

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kent AG, Vill AC, Shi Q et al (2020) Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi–C. Nat Commun 11:4379. https://doi.org/10.1038/s41467-020-18164-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oyarzabal OA, Rad R, Backert S (2007) Conjugative transfer of chromosomally encoded antibiotic resistance from Helicobacter pylori to Campylobacter jejuni. J Clin Microbiol 45:402–408. https://doi.org/10.1128/JCM.01456-06

    Article  CAS  PubMed  Google Scholar 

  61. Stingl K, Müller S, Scheidgen-Kleyboldt G et al (2010) Composite system mediates two-step DNA uptake into Helicobacter pylori. Proc Natl Acad Sci USA 107:1184–1189. https://doi.org/10.1073/pnas.0909955107

    Article  PubMed  Google Scholar 

  62. Her H-L, Lin P-T, Wu Y-W (2021) PangenomeNet: A pan-genome-based network reveals functional modules on antimicrobial resistome for Escherichia coli strains. BMC Bioinformatics 22:548. https://doi.org/10.1186/s12859-021-04459-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

NA gratefully acknowledges the initial funding support from the OU VPRP office for the establishment of the Proteomics Core Facility.

Funding

This work did not receive any specific funding.

Author information

Authors and Affiliations

Authors

Contributions

RSPR and SDG planned and performed the work, and wrote the manuscript. LP helped in data curation. All authors contributed intellectually, and edited/reviewed the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to R. Shyama Prasad Rao or Sudeep D. Ghate.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

The work is in compliance with ethical standards. No ethical clearance was necessary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 630 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, R.S.P., Ghate, S.D., Pinto, L. et al. Extent of Virulence and Antibiotic Resistance Genes in Helicobacter pylori and Campylobacteria. Curr Microbiol 81, 154 (2024). https://doi.org/10.1007/s00284-024-03653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03653-5

Navigation