Log in

Evaluation of Mutations Related to Streptomycin Resistance in Mycobacterium tuberculosis Clinical Isolates

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Drug resistance to streptomycin in the clinical isolates of Mycobacterium tuberculosis (MTB) needs special consideration. It can mostly be caused by mutations in four genes with the names rpsL, rrs, gidB, and whiB7. The main objective of this study was the evaluation of the type and frequency of mutations in these mentioned genes using the PCR-sequencing method. This study was performed on 15 streptomycin-resistant and five streptomycin-sensitive isolates. Among resistant isolates, 11 samples contained mutations in codon 43 of the rpsL gene, which caused the lysine to be converted to arginine. Additionally, all of the isolates had mutations in the gidB. Missense mutations in codons 92 and 20 of this gene result in the amino acids Glutamic acid or Arginine being changed to Aspartic acid or Proline, respectively. No mutations in the rrs or whiB7 were found in any of the samples. Simultaneous mutations of rpsL and gidB were found in 10 isolates, the majority of which were Bei**g strain. The results showed that the mutations of rpsL and gidB genes are mostly responsible for the streptomycin resistance in the evaluated MTB isolates. Furthermore, the discovery of dual mutations in Bei**g strains highlights the strain's considerable potential for develo** Tuberculosis drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data transparency is provided.

Code Availability

Not applicable.

References

  1. Gagneux S (2018) Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 16(4):202

    Article  PubMed  CAS  Google Scholar 

  2. Reid MJ, Arinaminpathy N, Bloom A, Bloom BR, Boehme C, Chaisson R, Chin DP, Churchyard G, Cox H, Ditiu L (2019) Building a tuberculosis-free world: the lancet commission on tuberculosis. Lancet 393(10178):1331–1384

    Article  PubMed  Google Scholar 

  3. World Health Organization (WHO) (2020) Global Tuberculosis Report 2020. https://www.who.int/publications/i/item/9789240013131

  4. Paleckyte A, Dissanayake O, Mpagama S, Lipman MC, McHugh TD (2021) Reducing the risk of tuberculosis transmission for HCWs in high incidence settings. Antimicrob Resist Infect Control 10(1):1–11

    Article  Google Scholar 

  5. Moore DA, Evans CA, Gilman RH, Caviedes L, Coronel J, Vivar A, Sanchez E, Piñedo Y, Saravia JC, Salazar C (2006) Microscopic-observation drug-susceptibility assay for the diagnosis of TB. N Engl J Med 355(15):1539–1550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Miotto P, Zhang Y, Cirillo DM, Yam WC (2018) Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology 23(12):1098–1113

    Article  PubMed  Google Scholar 

  7. Gaude GS, Hattiholli J, Kumar P (2014) Risk factors and drug-resistance patterns among pulmonary tuberculosis patients in northern Karnataka region, India. Niger Med J 55(4):327

    Article  PubMed  PubMed Central  Google Scholar 

  8. World Health Organization (WHO) (2008) WHO/IUATLD global project on anti-tuberculosis drug resistance surveillance. https://apps.who.int/iris/bitstream/handle/10665/43831/9789241563543_eng.pdf?sequence=1

  9. Kerantzas CA, Jacobs WR (2017) Origins of combination therapy for tuberculosis: lessons for future antimicrobial development and application. MBio. https://doi.org/10.1128/mBio.01586-16

    Article  PubMed  PubMed Central  Google Scholar 

  10. Karimi S, Mirhendi H, Zaniani FR, Manesh SE, Salehi M, Esfahani BN (2017) Rapid Detection of streptomycin-Resistant Mycobacterium tuberculosis by rpsL-restriction fragment length polymorphism. Adv biomed res. https://doi.org/10.4103/abr.abr_240_16

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jagielski T, Ignatowska H, Bakuła Z, Dziewit Ł, Napiórkowska A, Augustynowicz-Kopeć E, Zwolska Z, Bielecki J (2014) Screening for streptomycin resistance-conferring mutations in Mycobacterium tuberculosis clinical isolates from Poland. PLoS ONE 9(6):e100078

    Article  PubMed  PubMed Central  Google Scholar 

  12. Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, Suzuki Y, Ochi K (2007) Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol 63(4):1096–1106

    Article  PubMed  CAS  Google Scholar 

  13. Bwalya P, Yamaguchi T, Solo ES, Chizimu JY, Mbulo G, Nakajima C, Suzuki Y (2021) Characterization of mutations associated with streptomycin resistance in multidrug-resistant Mycobacterium tuberculosis in Zambia. Antibiotics 10(10):1169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang Y, Li Q, Gao H, Zhang Z, Liu Y, Lu J, Dai E (2019) The roles of rpsL, rrs, and gidB mutations in predicting streptomycin-resistant drugs used on clinical Mycobacterium tuberculosis isolates from Hebei Province. China Int J Clin Exp Pathol 12(7):2713

    PubMed  CAS  Google Scholar 

  15. Tudó G, Rey E, Borrell S, Alcaide F, Codina G, Coll P, Martín-Casabona N, Montemayor M, Moure R, Orcau A (2010) Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis clinical isolates in the area of Barcelona. J Antimicrob Chemother 65(11):2341–2346

    Article  PubMed  Google Scholar 

  16. Reeves AZ, Campbell PJ, Sultana R, Malik S, Murray M, Plikaytis BB, Shinnick TM, Posey JE (2013) Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5′ untranslated region of whiB7. Antimicrob Agents Chemother 57(4):1857–1865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Villellas C, Aristimuño L, Vitoria M-A, Prat C, Blanco S, de Viedma DG, Domínguez J, Samper S, Aínsa JA (2013) Analysis of mutations in streptomycin-resistant strains reveals a simple and reliable genetic marker for identification of the Mycobacterium tuberculosis Bei**g genotype. J Clin Microbiol 51(7):2124–2130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Shafipour M, Shirzad-Aski H, Ghaemi EA, Sohrabi A, Babaii Kochaksaraei M, Taziki M, Rahimi S, Ghazvini K, Baei B (2021) Mycobacterium tuberculosis ty** using allele-specific oligonucleotide multiplex PCR (ASO–PCR) method. Curr Microbiol 8(12):4009–4013

    Article  Google Scholar 

  19. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, Savine E, De Haas P, Van Deutekom H, Roring S (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat ty** of Mycobacterium tuberculosis. J Clin Microbiol 44(12):4498–4510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. World Health Organization (WHO) Dose optimization of rifampicin, isoniazid, pyrazinamide and ethambutol in the treatment of drug-susceptible tuberculosis. https://www.who.int/docs/default-source/hq-tuberculosis/dose-optimization-concept-note.pdf?sfvrsn=934ab3e2_2

  21. The Centers for Disease Control and Prevention (CDC) (2022) Surveillance definitions for extensively drug resistant (XDR) and pre-XDR tuberculosis. CDC. https://www.cdc.gov/tb/publications/letters/2022/surv-def-xdr.html

  22. Hlaing YM, Tongtawe P, Tapchaisri P, Thanongsaksrikul J, Thawornwan U, Archanachan B, Srimanote P (2017) Mutations in streptomycin resistance genes and their relationship to streptomycin resistance and lineage of Mycobacterium tuberculosis Thai isolates. Tuberc Respir Dis 80(2):159

    Article  Google Scholar 

  23. World Health Organization (2019) WHO consolidated guidelines on drug-resistant tuberculosis treatment (No. WHO/CDS/TB/2019.7). World Health Organization

  24. Cohen KA, Stott KE, Munsamy V, Manson AL, Earl AM, Pym AS (2020) Evidence for expanding the role of streptomycin in the management of drug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 64(9):e00860-e820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Shrestha D, Maharjan B, Oo NAT, Isoda N, Nakajima C, Suzuki Y (2020) Molecular analysis of streptomycin-resistance associating genes in Mycobacterium tuberculosis isolates from Nepal. Tuberculosis 125:101985

    Article  PubMed  CAS  Google Scholar 

  26. Khosravi AD, Etemad N, Hashemzadeh M, Dezfuli SK, Goodarzi H (2017) Frequency of rrs and rpsL mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from Iranian patients. J Glob Antimicrob Resist 9:51–56

    Article  PubMed  Google Scholar 

  27. Nhu N, Lan N, Phuong N, van Chau NV, Farrar J, Caws M (2012) Association of streptomycin resistance mutations with level of drug resistance and Mycobacterium tuberculosis genotypes. Int J Tuberc Lung Dis 16(4):527–531

    Article  PubMed  CAS  Google Scholar 

  28. Zhao L-l, Liu H-c, Sun Q, **ao T-y, Zhao X-q, Li G-l, Zeng C-y, Wan K-l (2015) Identification of mutations conferring streptomycin resistance in multidrug-resistant tuberculosis of China. Diagn Microbiol Infect Dis 83(2):150–153

    Article  PubMed  CAS  Google Scholar 

  29. Sun Y-J, Luo J-T, Wong S-Y, Lee A (2010) Analysis of rpsL and rrs mutations in Bei**g and non-Bei**g streptomycin-resistant Mycobacterium tuberculosis isolates from Singapore. Clin Microbiol Infect 16(3):287–289

    Article  PubMed  CAS  Google Scholar 

  30. Smittipat N, Juthayothin T, Billamas P, Jaitrong S, Rukseree K, Dokladda K, Chaiyasirinroje B, Disratthakit A, Chaiprasert A, Mahasirimongkol S (2016) Mutations in rrs, rpsL and gidB in streptomycin-resistant Mycobacterium tuberculosis isolates from Thailand. J Glob Antimicrob Resist 4:5–10

    Article  PubMed  Google Scholar 

  31. Sun H, Zhang C, **ang L, Pi R, Guo Z, Zheng C, Li S, Zhao Y, Tang K, Luo M (2016) Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis isolates in Sichuan, China and the association between Bei**g-lineage and dual-mutation in gidB. Tuberculosis 96:102–106

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Department of Microbiology, which belonged to Golestan University of Medical Sciences, for their kind cooperation.

Funding

The work was supported by Golestan University of Medical Sciences, Gorgan, Iran (grant number: IR.GOUMS.111209).

Author information

Authors and Affiliations

Authors

Contributions

(i) The conception or design of the study: EAG, HS, MS. (ii) the acquisition: MS, HS, SZ, KG analysis: HS, MS interpretation of the data: HS, MS, SG, AM, PMK; and (iii) writing of the manuscript: HS, MS, EAG. All authors approved the final version.

Corresponding author

Correspondence to Ezzat Allah Ghaemi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare for this study.

Ethics Approval

This study was approved by the Ethical Committee of Golestan University of Medical Sciences, Iran (Ethical code: IR.GOUMS.REC.1399.331).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafipour, M., Shirzad-Aski, H., Mohammadzadeh, A. et al. Evaluation of Mutations Related to Streptomycin Resistance in Mycobacterium tuberculosis Clinical Isolates. Curr Microbiol 79, 343 (2022). https://doi.org/10.1007/s00284-022-03043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03043-9

Navigation