Log in

Pseudomonas Saliphila sp. nov., a Bacterium Isolated from Oil-Well Production Water in Qinghai Oilfield of China

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Strain 16W4-4-3 T was isolated from the oil-well production water in Qinghai Oilfield, China. Cells were Gram-stain-negative, rod-shaped, catalase- and oxidase-positive, facultatively anaerobic and motile by single polar flagellum. The 16S rRNA gene sequences of strain 16W4-4-3 T showed the highest similarities with Pseudomonas profundi M5T (98.8%), P. pelagia CL-AP6T (98.0%), P. salina XCD-X85T (97.7%), and P. sabulinigri J64T (97.5%). The phylogenetic trees based on multilocus sequence analyses with concatenating 16S rRNA, gyrB, rpoD and rpoB genes suggested that this strain should be affiliated to the genus Pseudomonas but remotely related from other species. In addition, whole genome analyses revealed that the digital DNA–DNA hybridization values and average nucleotide identities of strain 16W4-4-3 T against its close relatives were all below 28.8% and 86.5%, respectively. Furthermore, the isolate had totally different whole cell protein profile as compared to those of other species. Major fatty acids were summed feature 8 (C18:1ω7c and/or C18:1ω6c), C16:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c) and C17:0cyclo. Major isoprenoid quinone was ubiquinone (Q-9), and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The DNA G + C content was 58.5 mol%. Therefore, phenotypic, phylogenetic, genomic, chemotaxonomic, and proteomic traits showed that the isolate represented a novel species of the genus Pseudomonas, the name Pseudomonas saliphila sp. nov. is proposed. Type strain is 16W4-4-3 T (= CGMCC 1.13350 T = KCTC 72619 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ANI:

Average nucleotide identity

ANIb:

Average nucleotide identity with the BLASTN algorithm

ANIm:

Average nucleotide identity using the MUMmer ultrarapid aligning tool

dDDH:

Digital DNA–DNA hybridization

MLSA:

Multilocus sequence analyses

gyrB :

DNA gyrase, subunit B gene

rpoB :

RNA polymerase beta subunit gene

rpoD :

RNA polymerase sigma 70 (sigma D) factor gene

MALDI-TOF MS:

Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry

MA:

Marine agar 2216 (Difco)

MB:

Marine broth 2216 (Difco

References

  1. Palleroni NJ (2010) The pseudomonas story. Environ Microbiol 12:1377–1383. https://doi.org/10.1111/j.1462-2920.2009.02041.x

    Article  CAS  PubMed  Google Scholar 

  2. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA, Chen WM, Shen FT, Young CC (2013) Pseudomonas sagittaria sp. Nov., a siderophore-producing bacterium isolated from oil-contaminated soil. Int J Syst Evol Microbiol 63:2410. https://doi.org/10.1099/ijs.0.045567-0

    Article  CAS  PubMed  Google Scholar 

  3. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E (2015) Phylogenomics and systematics in Pseudomonas. Front Microbiol 6:214. https://doi.org/10.3389/fmicb.2015.00214

    Article  PubMed  PubMed Central  Google Scholar 

  4. Parte AC (2018) LPSN—list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 68:1825–1829. https://doi.org/10.1099/ijsem.0.002786

    Article  PubMed  Google Scholar 

  5. Mulet M, Gomila M, Lemaitre B, Lalucat J, García-Valdés E (2012) Taxonomic characterization of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov. Syst Appl Microbiol 35:145–149. https://doi.org/10.1016/j.syapm.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  6. Mulet M, Gomila M, Scotta C, Sánchez D, Lalucat J, García-Valdés E (2012) Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and multilocus sequence analyses approaches in species discrimination within the genus Pseudomonas. Syst Appl Microbiol 35:455–464. https://doi.org/10.1016/j.syapm.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  7. Peix A, Ramírez-Bahena MH, Velázquez E (2018) The current status on the taxonomy of Pseudomonas revisited: An update. Infect Genet Evol 57:106–116. https://doi.org/10.1016/j.meegid.2017.10.026

    Article  PubMed  Google Scholar 

  8. Tohya M, Watanabe S, Teramoto K, Shimojima M, Tada T, Kuwahara-Arai K, War MW, Mya S et al (2019) Pseudomonas juntendi sp. nov., isolated from patients in Japan and Myanmar. Int J Syst Evol Microbiol 69:3377–3384. https://doi.org/10.1099/ijsem.0.003623

    Article  CAS  PubMed  Google Scholar 

  9. Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680. https://doi.org/10.1111/j.1574-6976.2011.00269.x

    Article  CAS  PubMed  Google Scholar 

  10. Cai M, Nie Y, Chi CQ, Tang YQ, Li Y, Wang XB, Liu ZS, Yang YF et al (2015) Crude oil as a microbial seed bank with unexpected functional potentials. Sci Rep 5:16057. https://doi.org/10.1038/srep16057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang SK, Li WJ, Wang D, Zhang YG, Xu LH et al (2003) Studies of the biological characteristics of some halophilic and halotolerant actinomycetes isolated from saline and alkaline soils. Actinomycetologica 17:6–10. https://doi.org/10.3209/saj.17_6

    Article  CAS  Google Scholar 

  12. Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In methods for general and molecular bacteriology, pp 341–352. Edited by Gerhardt P., et al. Washington, DC: American Society for Microbiology. doi: 10.1128/9781555817497.ch15

  13. King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307

    CAS  PubMed  Google Scholar 

  14. Meng Y, Liu H, Zhou Y, Cai M, Kang Y (2018) Vibrio gangliei sp. nov., a novel member of Vibrionaceae isolated from sawdust in a pigpen. Int J Syst Evol Microbiol 68:1969–1974. https://doi.org/10.1099/ijsem.0.002779

    Article  CAS  PubMed  Google Scholar 

  15. Menéndez E, Ramírez-Bahena MH, Fabryová A, Igual JM, Benada O, Mateos PF, Peix A, Kolařík M et al (2015) Pseudomonas coleopterorum sp. nov., a cellulase-producing bacterium isolated from the bark beetle Hylesinus fraxini. Int J Syst Evol Microbiol 65:2852–2858. https://doi.org/10.1099/ijs.0.000344

    Article  CAS  PubMed  Google Scholar 

  16. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  18. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  19. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Biol 20:406–416. https://doi.org/10.1093/sysbio/20.4.406

    Article  Google Scholar 

  20. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analyses version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  22. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformat 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  23. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kew S, Banerjee T, Minihane AM, Finnegan YE, Williams CM, Calderet PC (2003) Relation between the fatty acid composition of peripheral blood mononuclear cells and measures of immune cell function in healthy, free-living subjects aged 25–72 y. Am J Clin Nutr 77:1278–1286. https://doi.org/10.1093/ajcn/77.5.1278

    Article  CAS  PubMed  Google Scholar 

  25. Komagata K, Suzuki KI (1987) Lipid and cell-wall analyses in bacterial systematics. Methods Microbiol 19:161–207. https://doi.org/10.1016/S0580-9517(08)70410-0

    Article  CAS  Google Scholar 

  26. Kates M (1972) Techniques of lipidology: isolation, analysis and identification of lipids. Lab Tech Biochem Mol Biol 350:436–438. https://doi.org/10.1016/s0075-7535(08)70544-8

    Article  Google Scholar 

  27. Shu L, Yang Y (2017) Bacillus classification based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry—effects of culture conditions. Sci Rep 7:15546. https://doi.org/10.1038/s41598-017-15808-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hwang C, Zhang G, Kang S, Kim HJ, Cho BC (2009) Pseudomonas pelagia sp. nov., isolated from a culture of the Antarctic green alga Pyramimonas gelidicola. Int J Syst Evol Microbiol 59:3019–3024. https://doi.org/10.1099/ijs.0.008102-0

    Article  CAS  PubMed  Google Scholar 

  29. Kim K, Roh SW, Chang H, Nam Y, Yoon J, Jeon CO, Oh H, Bae J et al (2009) Pseudomonas sabulinigri sp. nov., isolated from black beach sand. Int J Syst Evol Microbiol 59:38–41. https://doi.org/10.1099/ijs.0.65866-0

    Article  CAS  PubMed  Google Scholar 

  30. Sun J, Wang W, Ying Y, Zhu X, Liu J (2018) Pseudomonas profundi sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 68:1776–1780. https://doi.org/10.1099/ijsem.0.002748

    Article  CAS  PubMed  Google Scholar 

  31. Zhong Z, Liu Y, Hou T, Liu H, Zhou Y (2015) Pseudomonas salina sp. nov., isolated from a salt lake in Qaidam basin. China Int J Syst Evol Microbiol 65:2846–2851. https://doi.org/10.1099/ijs.0.000341

    Article  CAS  PubMed  Google Scholar 

  32. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, Costa MSD, Rooney AP, Yi H et al (2018) Proposed minimal standards for the use of the genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Institute of Microbiology, Chinese Academy of Sciences, for providing the transmission electron microscopy facility. The GenBank/EMBL/DDBJ accession numbers for whole genome and 16S rRNA gene sequences of strain 16W4-4-3 T are VTVA00000000 and MN423266; and whole genome accession numbers for Pseudomonas profundi M5T and P. salina CGMCC 1.12482 T are VTPZ00000000 and VTTI00000000, respectively.

Funding

This work was supported by the National Science and Technology Infrastructure Foundation of China (NIMR-2019); Guizhou Scientific Plan Project [(2019) 2873]; Excellent Youth Talent Training Project of Guizhou Province [(2017) 5639]; Guiyang Science and Technology Project [(2017) No.5–19]; Talent Base Project of Guizhou Province, China [FCJD2018-22]; Research Fund of Education Bureau of Guizhou Province, China [(2018) 481].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Man Cai or Ying-Qian Kang.

Ethics declarations

Conflicts of interest

The authors declare there are no conflicts of interest. The authors have obtained the appropriate permissions from the responsible authorities of Qinghai Oilfield (Tibetan Plateau) for using oil-well production water in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 827 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XJ., Liu, HC., Zhou, YG. et al. Pseudomonas Saliphila sp. nov., a Bacterium Isolated from Oil-Well Production Water in Qinghai Oilfield of China. Curr Microbiol 77, 1924–1931 (2020). https://doi.org/10.1007/s00284-020-01986-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01986-5

Navigation