Log in

Rhizobium terrae sp. nov., Isolated from an Oil-Contaminated Soil in China

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-stain-negative, facultative aerobic, non-spore-forming, non-motile, non-flagellated, rod-shaped bacterium, designated strain NAU-18T was isolated from an oil-contaminated soil in China. Strain NAU-18T could grow at 10–42 °C (optimum, 30 °C), at pH 5.0–8.0 (optimum, 7.0) and in the presence of 0–2.0% (w/v) NaCl (optimum, 0.5% NaCl in R2A). The predominant fatty acids were C18:1ω7c (71.2%) and Summed feature 2 (5.1%), representing 76.3% of the total fatty acids. The major respiratory quinones were Q9 and Q10. The DNA G + C content of strain NAU-18T was 61.4 mol% based on its draft genome sequence. Genome annotation of strain NAU-18T predicted the presence of 6668 genes, of which 6588 are coding proteins and 80 are RNA genes. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain NAU-18T was a member of the genus Rhizobium and showed 96.93% (with 93.2% coverage) and 96.81% (with 100% coverage) identities with those of Neorhizobium alkalisoli CCBAU 01393T and Rhizobium oryzicola ZYY136T, respectively. In the phylogenetic analysis, strain NAU-18T and R. oryzicola ZYY136T are consistently placed in the same branch. Strain NAU-18T represents a novel species within the genus Rhizobium, for which the name Rhizobium terrae sp. nov. is proposed, with the type strain NAU-18T (=KCTC 62418T = CCTCC AB 2018075T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee KB, Te LC, Anzai Y et al (2005) The hierarchical system of the “Alphaproteobacteria”: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919. https://doi.org/10.1099/ijs.0.63663-0

    Article  PubMed  CAS  Google Scholar 

  2. Frank B (1889) Ueber die Pilzsymbiose der Leguminosen. Plant Biol 7(8):332–346

    Google Scholar 

  3. Zhang XX, Gao JS, Cao YH et al (2015) Rhizobium oryzicola sp. nov., potential plantgrowth—Promoting endophytic bacteria isolated from rice roots. Int J Syst Evol Microbiol 65:2931–2936. https://doi.org/10.1099/ijs.0.000358

    Article  PubMed  CAS  Google Scholar 

  4. Zhang X-X, Tang X, Sheirdil RA et al (2014) Rhizobium rhizoryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 64:1373–1377. https://doi.org/10.1099/ijs.0.056325-0

    Article  PubMed  CAS  Google Scholar 

  5. Roche P, Lerouge P, Ponthus C, Prome JC (1991) Structural determination of bacterial nodulation factors involved in the Rhizobium meliloti-alfalfa symbiosis. J Biol Chem 266:10933–10940

    PubMed  CAS  Google Scholar 

  6. Gao JL, Sun P, Wang XM et al (2017) Rhizobium wenxiniae sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 67:2798–2803. https://doi.org/10.1099/ijsem.0.002025

    Article  PubMed  CAS  Google Scholar 

  7. Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int J Agric Biol 10:85–88

    CAS  Google Scholar 

  8. Peng G, Yuan Q, Li H et al (2008) Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 58:2158–2163. https://doi.org/10.1099/ijs.0.65632-0

    Article  PubMed  CAS  Google Scholar 

  9. Puławska J, Willems A, De Meyer SE, Süle S (2012) Rhizobium nepotum sp. nov. isolated from tumors on different plant species. Syst Appl Microbiol 35:215–220. https://doi.org/10.1016/j.syapm.2012.03.001

    Article  PubMed  Google Scholar 

  10. Wielbo J, Marek-Kozaczuk M, Kidaj D, Skorupska A (2011) Competitiveness of Rhizobium leguminosarum bv. trifolii strains in mixed inoculation of clover (Trifolium pratense). Polish J Microbiol 60:43–49

    Article  Google Scholar 

  11. McInroy JA, Kloepper JW (1995) Population dynamics of endophytic bacteria in field-grown sweet corn and cotton. Can J Microbiol 41:895–901. https://doi.org/10.1139/m95-123

    Article  CAS  Google Scholar 

  12. Mousavi SA, Willems A, Nesme X et al (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38:84–90. https://doi.org/10.1016/j.syapm.2014.12.003

    Article  PubMed  Google Scholar 

  13. Mousavi SA, Österman J, Wahlberg N et al (2014) Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215. https://doi.org/10.1016/j.syapm.2013.12.007

    Article  PubMed  CAS  Google Scholar 

  14. An DS, Im WT, Yang HC, Lee ST (2006) Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. Int J Syst Evol Microbiol 56:443–448. https://doi.org/10.1099/ijs.0.63942-0

    Article  PubMed  CAS  Google Scholar 

  15. Kimes NE, López-Pérez M, Flores-Félix JD et al (2015) Pseudorhizobium pelagicum gen. nov., sp. nov. isolated from a pelagic Mediterranean zone. Syst Appl Microbiol 38:293–299. https://doi.org/10.1016/j.syapm.2015.05.003

    Article  PubMed  Google Scholar 

  16. Tóth E, Szuróczki S, Kéki Z et al (2017) Gellertiella hungarica gen. nov., sp. nov., a novel bacterium of the family Rhizobiaceae isolated from a spa in Budapest. Int J Syst Evol Microbiol 67:4565–4571. https://doi.org/10.1099/ijsem.0.002332

    Article  PubMed  CAS  Google Scholar 

  17. Casida LE (1982) Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil. Int J Syst Bacteriol 32:339–345. https://doi.org/10.1099/00207713-32-3-339

    Article  Google Scholar 

  18. Díaz-Cárdenas C, Bernal LF, Caro-Quintero A et al (2017) Draft genome and description of Consotaella salsifontis gen. nov. sp. nov., a halophilic, free-living, nitrogen-fixing alphaproteobacterium isolated from an ancient terrestrial saline spring. Int J Syst Evol Microbiol 67:3744–3751. https://doi.org/10.1099/ijsem.0.002185

    Article  PubMed  CAS  Google Scholar 

  19. Kathiravan R, Jegan S, Ganga V et al (2013) Ciceribacter lividus gen. nov., sp. nov., isolated from rhizosphere soil of chick pea (Cicer arietinum L.). Int J Syst Evol Microbiol 63:4484–4488. https://doi.org/10.1099/ijs.0.049726-0

    Article  PubMed  CAS  Google Scholar 

  20. Tighe SW, De LP, Dipietro K, Lindstro K (2000) Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801

    Article  CAS  Google Scholar 

  21. Young JM, Kuykendall LD, Martínez-Romero E et al (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi. Int J Syst Evol Microbiol 51:89–103. https://doi.org/10.1099/00207713-51-1-89

    Article  PubMed  CAS  Google Scholar 

  22. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    Article  CAS  Google Scholar 

  23. Lu YL, Chen WF, Han LL et al (2009) Rhizobium alkalisoli sp. nov., isolated from Caragana intermedia growing in saline-alkaline soils in the north of China. Int J Syst Evol Microbiol 59:3006–3011. https://doi.org/10.1099/ijs.0.007237-0

    Article  CAS  Google Scholar 

  24. Claus D (1992) A standardized Gram staining procedure. World J Microbiol Biotechnol 8:451–452. https://doi.org/10.1007/BF01198764

    Article  PubMed  CAS  Google Scholar 

  25. Zhang WY, Huo YY, Zhang XQ et al (2013) Halolamina salifodinae sp. nov. and Halolamina salina sp. nov., two extremely halophilic archaea isolated from a salt mine. Int J Syst Evol Microbiol 63:4380–4385. https://doi.org/10.1099/ijs.0.050864-0

    Article  PubMed  CAS  Google Scholar 

  26. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202. https://doi.org/10.1016/0378-1097(90)90282-U

    Article  CAS  Google Scholar 

  27. Tindall BJ (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130. https://doi.org/10.1016/S0723-2020(11)80158-X

    Article  CAS  Google Scholar 

  28. Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2007) Phenotypic Characterization and the Principles of Comparative Systematics. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology, 3rded edn. ASM Pres, Washington, D.C., pp 330–393

    Google Scholar 

  29. Miller LT (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586

    Article  CAS  Google Scholar 

  30. Kuykendall LD, Roy MA, Oneill JJ, Devine TE (1988) Fatty Acids, Antibiotic Resistance, and Deoxyribonucleic Acid Homology Groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361. https://doi.org/10.1099/00207713-38-4-358

    Article  CAS  Google Scholar 

  31. Zhang X, Li B, Wang H et al (2012) Rhizobium petrolearium sp. nov., isolated from oilcontaminated soil. Int J Syst Evol Microbiol 62:1871–1876. https://doi.org/10.1099/ijs.0.026880-0

    Article  PubMed  CAS  Google Scholar 

  32. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218. https://doi.org/10.1016/S0022-2836(61)80047-8

    Article  CAS  Google Scholar 

  33. Du H, Jiao N, Hu Y, Zeng Y (2006) Diversity and distribution of pigmented heterotrophic bacteria in marine environments. FEMS Microbiol Ecol 57:92–105. https://doi.org/10.1111/j.1574-6941.2006.00090.x

    Article  PubMed  CAS  Google Scholar 

  34. Chun J, Lee J-H, Jung Y et al (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261. https://doi.org/10.1099/ijs.0.64915-0

    Article  PubMed  CAS  Google Scholar 

  35. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  PubMed  CAS  Google Scholar 

  36. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  37. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  PubMed  CAS  Google Scholar 

  38. Markowitz VM, Chen IMA, Palaniappan K et al (2014) IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 42:D560–D567

    Article  CAS  Google Scholar 

  39. Pati A, Ivanova NN, Mikhailova N et al (2010) GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods. https://doi.org/10.1038/nmeth.1457

    Article  PubMed  Google Scholar 

  40. Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103. https://doi.org/10.1016/S0923-2508(00)01172-4

    Article  PubMed  CAS  Google Scholar 

  41. Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54:1–11. https://doi.org/10.1016/j.femsec.2005.02.015

    Article  PubMed  CAS  Google Scholar 

  42. De LJ, Cattoir H, Reynaerts A (1970) The Quantitative Measurement of DNA Hybridization from Renaturation Rates. Eur J Biochem. https://doi.org/10.1111/j.1432-1033.1970.tb00830.x

    Article  Google Scholar 

  43. Ebenhöh O, Handorf T, Heinrich R (2004) Structural analysis of expanding metabolic networks. Genome Inform 15:35–45. https://doi.org/10.11234/GI1990.15.35

    Article  PubMed  Google Scholar 

  44. R Foundation for Statistical Computing (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Boston

    Google Scholar 

  45. Stackebrandt E, Frederiksen W, Garrity GM et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047. https://doi.org/10.1099/ijs.0.02360-0

    Article  PubMed  CAS  Google Scholar 

  46. Gevers D, Cohan FM, Lawrence JG et al (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    Article  CAS  Google Scholar 

  47. Martens M, Dawyndt P, Coopman R et al (2008) Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekee** genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214. https://doi.org/10.1099/ijs.0.65392-0

    Article  PubMed  CAS  Google Scholar 

  48. Martens M, Delaere M, Coopman R et al (2007) Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57:489–503. https://doi.org/10.1099/ijs.0.64344-0

    Article  PubMed  CAS  Google Scholar 

  49. Vinuesa P, Silva C, Lorite MJ et al (2005) Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716. https://doi.org/10.1016/j.syapm.2005.05.007

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-dong Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank/EMBL/DDBJ accession numbers for the draft genome sequence and 16S rRNA gene, atpD and recA gene sequence of strain NAU-18T are QJKM00000000, MH244125, MH327782 and MH327781, respectively. The annotation information is deposited at the Joint Genomic Institute (JGI), with IMG genome ID 2784132094.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 612 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, Zp., Cao, Wm., Zhang, X. et al. Rhizobium terrae sp. nov., Isolated from an Oil-Contaminated Soil in China. Curr Microbiol 77, 1117–1124 (2020). https://doi.org/10.1007/s00284-020-01889-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01889-5

Navigation