Log in

The Draft Genome Sequence of a Novel High-Efficient Butanol-Producing Bacterium Clostridium Diolis Strain WST

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A wild-type solventogenic strain Clostridium diolis WST, isolated from mangrove sediments, was characterized to produce high amount of butanol and acetone with negligible level of ethanol and acids from glucose via a unique acetone-butanol (AB) fermentation pathway. Through the genomic sequencing, the assembled draft genome of strain WST is calculated to be 5.85 Mb with a GC content of 29.69% and contains 5263 genes that contribute to the annotation of 5049 protein-coding sequences. Within these annotated genes, the butanol dehydrogenase gene (bdh) was determined to be in a higher amount from strain WST compared to other Clostridial strains, which is positively related to its high-efficient production of butanol. Therefore, we present a draft genome sequence analysis of strain WST in this article that should facilitate to further understand the solventogenic mechanism of this special microorganism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP (2012) Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab Eng 14(6):630–641

    Article  CAS  Google Scholar 

  2. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673

    Article  CAS  Google Scholar 

  3. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L (2008) InterPro: the integrative protein signature database. Nucleic Acids Res 37(S1):D211–D215

    PubMed  PubMed Central  Google Scholar 

  4. Jiang Y, Chen T, Dong W, Zhang M, Zhang W, Wu H, Ma J, Jiang M, **n F (2017) The Draft Genome Sequence of Clostridium beijerinckii NJP7, a unique bacterium capable of producing isopropanol-butanol from hemicellulose through consolidated bioprocessing. Curr Microbiol (3):1–4

  5. Joungmin L, Yusin J, Sungjun C, Jungae I, Song HH, Junghee C, Doyoung S, Papoutsakis ET, Bennett GN, Sangyup L (2012) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl Environ Microbiol 78(5):1416–1423

    Article  Google Scholar 

  6. Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100

    Article  CAS  Google Scholar 

  7. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20(2):265–272

    Article  CAS  Google Scholar 

  8. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964

    Article  CAS  Google Scholar 

  9. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J 17(1):10

    Article  Google Scholar 

  10. Minoru K, Michihiro A, Susumu G, Masahiro H, Mika H, Masumi I, Toshiaki K, Shuichi K, Shujiro O, Toshiaki T (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36(Database issue):D480–D484

    Google Scholar 

  11. Sedlar K, Kolek J, Provaznik I, Patakova P (2017) Reclassification of non-type strain Clostridium pasteurianum NRRL B-598 as Clostridium beijerinckii NRRL B-598. J Biotechnol 244:1–3

    Article  CAS  Google Scholar 

  12. Shanmugam S, Sun C, Zeng XM, Wu YR (2018) High-efficient production of biobutanol by a novel Clostridium sp. strain WST with uncontrolled pH strategy. Bioresource Technol 256:543–547

    Article  CAS  Google Scholar 

  13. Sun C, Zhang S, **n F, Shanmugam S, Wu YR (2018) Genomic comparison of Clostridium species with the potential in utilizing red algal biomass for biobutanol production. Biotechnol Biofuels 11:42

    Article  Google Scholar 

  14. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36

    Article  CAS  Google Scholar 

  15. Wu YR, He J (2015) Characterization of a xylanase-producing Cellvibrio mixtus strain J3-8 and its genome analysis. Sci Rep 5:10521

    Article  Google Scholar 

  16. Wu YR, Li Y, Yang KL, He J (2012) Draft genome sequence of butanol-acetone-producing Clostridium beijerinckii strain G117. J Bacteriol 194(19):5470–5471

    Article  CAS  Google Scholar 

  17. **n F, Chen T, Jiang Y, Dong W, Zhang W, Zhang M, Wu H, Ma J, Jiang M (2017) Strategies for improved isopropanol-butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing. Biotechnol Biofuels 10(1):118

    Article  Google Scholar 

  18. **n F, Dong W, Jiang Y, Ma J, Zhang W, Wu H, Zhang M, Jiang M (2017) Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2017.1376309

    Article  PubMed  Google Scholar 

  19. Yang G, Yu J, Hui W, Liu X, Li Z, Jian L, Han X, Shen Z, Dong H, Yang Y (2011) Economical challenges to microbial producers of butanol: Feedstock, butanol ratio and titer. Biotechnol J 6(11):1348

    Article  Google Scholar 

  20. Yi W, Li X, Mao Y, Blaschek HP (2012) Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-SEq. BMC Genomics 13(1):102

    Article  Google Scholar 

  21. Yu W, Fei T, Tang H, ** X (2013) Genome sequence of Clostridium diolis strain DSM 15410, a promising natural producer of 1,3-propanediol. Genome Announc 1(4):e00542-13

    Article  Google Scholar 

  22. Zhao J, Lu C, Chen CC, Yang ST (2013) Biological production of butanol and higher alcohols. Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley, Hoboken, pp 235–262

    Google Scholar 

Download references

Acknowledgements

This work was financially supported the “Sail Plan” Program for the Introduction of Outstanding Talents of Guangdong Province of China (No. 14600601), the Major University Research Foundation of Guangdong Province of China (No. 2015KQNCX041), the Start-Up Funding of Shantou University (No. NTF15007), the International Cooperation Research Project of Shantou University (No. NC2017001) and the Foundation of Guangdong Provincial Key Laboratory of Marine Biotechnology (No. GPKLMB201702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Rui Wu.

Ethics declarations

Conflict of interest

The authors have declared there was no conflict of interest.

Additional information

Nucleotide Sequence Accession Numbers The draft genomic sequence of C. diolis strain WST has been deposited into GenBank with the accession number of PRKY00000000.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Sun, C. & Wu, YR. The Draft Genome Sequence of a Novel High-Efficient Butanol-Producing Bacterium Clostridium Diolis Strain WST. Curr Microbiol 75, 1011–1015 (2018). https://doi.org/10.1007/s00284-018-1481-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1481-5

Navigation