Log in

Dose-escalating and pharmacological study of bortezomib in adult cancer patients with impaired renal function: a National Cancer Institute Organ Dysfunction Working Group Study

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To determine the toxicities, pharmacokinetics, pharmacodynamics, and maximum tolerated dose of bortezomib in patients with renal impairment and to develop dosing guidelines for such a patient population.

Patients and Methods

Sixty-two adult cancer patients received intravenous bortezomib at 0.7–1.5 mg/m2 on days 1, 4, 8, and 11 every 3 weeks. Patients were stratified by 24-h creatinine clearance (CrCl) normalized to body surface area (BSA) 1.73 m2 into five cohorts: normal renal function (≥60 ml/min/1.73 m2); mild dysfunction (40–59 ml/min/1.73 m2); moderate dysfunction (20–39 ml/min/1.73 m2); severe dysfunction (<20 ml/min/1.73 m2); and dialysis. Dose escalation was planned for the four cohorts with renal dysfunction. Plasma bortezomib concentrations and blood 20S proteasome inhibition were assayed.

Results

Bortezomib escalation to the standard 1.3 mg/m2 dose was well tolerated in all patients with CrCl ≥20 ml/min/1.73 m2; 0.7 mg/m2 was tolerated in three patients with severe renal dysfunction (<20 ml/min/1.73 m2). Bortezomib dose escalation was well tolerated in nine dialysis patients, including to 1.3 mg/m2 in four patients. Decreased CrCl did not affect bortezomib pharmacokinetics or pharmacodynamics. Bortezomib-related side-effects were neither more common nor severe in patients with renal dysfunction versus those with normal renal function.

Conclusion

Bortezomib 1.3 mg/m2 is well tolerated, and dose reductions are not necessary in patients with renal dysfunction. Extrapolation from clinical and pharmacologic data suggests patients with severe renal dysfunction, including dialysis patients, can receive bortezomib at the full dose established to be clinically effective in the general patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goldberg AL, Akopian TN, Kisselev AF et al (1997) New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biol Chem 378:131–140

    PubMed  CAS  Google Scholar 

  2. Zwickl P, Baumeister W, Steven A (2000) Dis-assembly lines: the proteosome and related ATPase-assisted proteases. Curr Opin Struct Biol 10:242–250

    Article  PubMed  CAS  Google Scholar 

  3. Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22:442–451

    Article  PubMed  CAS  Google Scholar 

  4. Hershko A (1997) Roles of ubiquitin -mediated proteolysis in cell cycle control. Curr Opin Struct Biol 9:788–799

    CAS  Google Scholar 

  5. Oikawa T, Sasaki T, Nakamura M et al (1998) The proteasome is involved in angiogenesis. Biochem Biophys Res Commun 246:243–248

    Article  PubMed  CAS  Google Scholar 

  6. Beg AA, Baltimore D (1996) An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274:782–784

    Article  PubMed  CAS  Google Scholar 

  7. Zetter BR (1993) Adhesion molecules in tumor metastasis. Semin Cancer Biol 4:215–218

    Google Scholar 

  8. Read MA, Neish AS, Luscinskas FW et al (1995) The proteasome pathway is required for cytokine-induced endothelial-leukocyte adhesion molecule expression. Immunity 2:493–506

    Article  PubMed  CAS  Google Scholar 

  9. Hideshima T, Richardson P, Chauhan D et al (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61:3071–3076

    PubMed  CAS  Google Scholar 

  10. Hideshima T, Mitsiades C, Akiyama M et al (2003) Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 101:1530–1534

    Article  PubMed  CAS  Google Scholar 

  11. Richardson PG, Sonneveld P, Schuster M et al (2007) Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood 110:3557–3560

    Article  PubMed  CAS  Google Scholar 

  12. San Miguel JF, Schlag R, Khuageva NK et al (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359:906–917

    Article  PubMed  CAS  Google Scholar 

  13. Goy A, Bernstein SH, Kahl BS et al (2009) Bortezomib in patients with relapsed or refractory mantle cell lymphoma: updated time-to-event analyses of the multicenter phase 2 PINNACLE study. Ann Oncol 20:520–525

    Article  PubMed  CAS  Google Scholar 

  14. San-Miguel JF, Richardson PG, Sonneveld P et al (2008) Efficacy and safety of bortezomib in patients with renal impairment: results from the APEX phase 3 study. Leukemia 22:842–849

    Article  PubMed  CAS  Google Scholar 

  15. Dimopoulos MA, Richardson P, Schlag R et al (2008) A prospective, randomized, phase III study of bortezomib, melphalan, prednisone and thalidomide (VMPT) versus bortezomib, melphalan and prednisone (VMP) in elderly newly diagnosed myeloma patients. Blood 112:1727a

    Google Scholar 

  16. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  17. Cheson BD, Bennett JM, Grever M et al (1996) National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood 87:4990–4997

    PubMed  CAS  Google Scholar 

  18. Cheson BD, Horning SJ, Coiffier B et al (1999) Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol 17:1244–1253

    PubMed  CAS  Google Scholar 

  19. Blade J, Samson D, Reece D et al (1998) Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br J Haematol 102:1115–1123

    Article  PubMed  CAS  Google Scholar 

  20. Prepared by a Committee of the Chronic Leukemia–Myeloma Task Force, National Cancer Institute (1968) Proposed guidelines for protocol studies. II. Plasma cell myeloma. Cancer Chemother Rep 3 1:17–39

    Google Scholar 

  21. Lightcap ES, McCormack TA, Pien CS et al (2000) Proteasome inhibition measurements: clinical application. Clin Chem 46:673–683

    PubMed  CAS  Google Scholar 

  22. Stewart AK, Sullivan D, Lonial S et al (2006) Pharmacokinetic (PK) and pharmacodynamics (PD) study of two doses of bortezomib (Btz) in patients with relapsed multiple myeloma (MM). Blood 108:1008a

    Google Scholar 

  23. Melamed J (2005) Repeat-dose pharmacokinetics and pharmacodynamics of bortezomib in patients with relapsed multiple myeloma. Report No. M34103-058 CSR. Millennium Pharmaceuticals, Inc., Cambridge

  24. Chanan-Khan AA, Richardson P, Lonial S et al (2005) Safety and efficacy of bortezomib in multiple myeloma patients with renal failure requiring dialysis. Blood 106:716a

    Article  Google Scholar 

  25. Ludwig H, Adam Z, Hajek R et al (2008) Bortezomib-doxorubicin-dexamethasone (BDD) for reversal of acute light chain induced renal failure (ARF) in multiple myeloma (MM). Results from a phase II study. Blood 112:Abstr 3682

  26. Pekol T, Daniels JS, Labutti J et al (2005) Human metabolism of the proteasome inhibitor bortezomib: identification of circulating metabolites. Drug Metab Dispos 33:771–777

    Article  PubMed  CAS  Google Scholar 

  27. Leger F, Seronie-Vivien S, Makdessi J et al (2002) Impact of the biochemical assay for serum creatinine measurement on the individual carboplatin dosing: a prospective study. Eur J Cancer 38:52–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the nurses and research specialists of the University of Wisconsin Carbone Cancer Center Phase I Program and acknowledge the editorial assistance of Jane Saunders of FireKite during development of this publication. This study was supported in part by the University of Wisconsin Carbone Cancer Center UO1 CA062491 Early Clinical Trials of Anti-Cancer Agents Phase 1 grant and the Clinical and Translational Science Award 1UL1RR025011 from the National Center for Research Resources, NIH; Case Western Reserve University U01 CA62502; University of Pittsburgh Cancer Institute and Medical Center grants UO1-CA099168, UO1-CA69855, P30CA47904 and NIH/GCR #5M01 RR 00056; City of Hope National Medical Center General Clinical Research Center grant (M01 RRR00043); University of Texas Health Science Center grant UO1-CA 069853-14; USC/Norris Comprehensive Cancer Center grant UO1-CA 62505.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Mulkerin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 340 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leal, T.B., Remick, S.C., Takimoto, C.H. et al. Dose-escalating and pharmacological study of bortezomib in adult cancer patients with impaired renal function: a National Cancer Institute Organ Dysfunction Working Group Study. Cancer Chemother Pharmacol 68, 1439–1447 (2011). https://doi.org/10.1007/s00280-011-1637-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1637-5

Keywords

Navigation