Log in

Connections of the dorsolateral prefrontal cortex with the thalamus: a probabilistic tractography study

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

The dorsolateral prefrontal cortex (DLPFC) is a cortical area involved in higher cognitive functions, and at the center of the pathophysiology of mental disorders such as depression and schizophrenia. Considering these major roles and the development of deep brain stimulation, the object of this study was to assess the patterns of connectivity of the DLPFC with its main subcortical relay, the thalamus, with the help of probabilistic tractography.

Methods

We used T1-weighted imaging and diffusion data from 18 subjects from the Human Connectome Project. The DLPFC and the thalamic nuclear groups were defined using the combination of atlases, sulcogyral anatomy and cytoarchitectonic data. Probabilistic tractography was performed from the DLPFC to the thalamus. The patterns of connectivity were assessed using two indexes: (1) a connectivity index (CI) which evaluate the strength of connection (2) an asymmetry index (AI) which explores the inter-hemispheric variability.

Results

The analysis of CI showed significant connections between the DLPFC and the dorsomedial nuclei (p < 0.05), the anterior nuclear groups (p < 0.05) and the right centromedian nucleus (p < 0.05). No link was found between handedness and AI (p > 0.05). Most of subjects (15/18) had a right predominance of the thalamo cortical connections of the DLPFC.

Conclusions

Probabilistic tractography appears as a valuable non-invasive tool for the exploration of the thalamocortical connections between the dorsolateral prefrontal cortex and thalamic nuclei. It allowed to show different inter-hemispheric patterns of connectivity, and highlighted the centromedian nucleus as a key subcortical relay of executive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Balconi M (2013) Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques. Neurosci Bull 29:381–389

    Article  PubMed  Google Scholar 

  2. Bardinet E, Bhattacharjee M, Dormont D, Pidoux B, Malandain G, Schüpbach M, Ayache N, Cornu P, Agid Y, Yelnik J (2009) A three-dimensional histological atlas of the human basal ganglia. II Atlas deformation strategy and evaluation in deep brain stimulation for Parkinson disease. J Neurosurg 110:208–219

    Article  PubMed  Google Scholar 

  3. Carmel PW (1970) Efferent projections of the ventral anterior nucleus of the thalamus in the monkey. Am J Anatomy 128:159–183

    Article  CAS  Google Scholar 

  4. Chen J, Zhou C, Wu B, Wang Y, Li Q, Wei Y, Yang D, Mu J, Zhu D, Zou D, **e P (2013) Left versus right repetitive transcranial magnetic stimulation in treating major depression: a meta-analysis of randomized trials. Psychiatry Res 210:1260–1264

    Article  PubMed  Google Scholar 

  5. D’Albis T, Haegelen C, Essert C, Fernandez-Vidal S, Lalys F, Jannin P (2014) PyDBS: an automated image processing workflow for deep brain stimulation surgery. Int J Comput Assist Radiol Surg 10:117–128

    Article  PubMed  Google Scholar 

  6. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Buckner RL, Blacker D, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980

    Article  PubMed  Google Scholar 

  7. Drevets WC, Savitz J, Trimble M (2008) The subgenual anterior cingulate cortex in mood disorders. CNS Spectr 13:663–681

    PubMed  PubMed Central  Google Scholar 

  8. Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, Oommen K, Osorio I, Nazzaro J, Labar D, Kaplitt M, Sperling M, Sandok E, Neal J, Handforth A, Stern J, DeSalles A, Chung S, Shetter A, Bergen D, Bakay R, Henderson J, French J, Baltuch G, Rosenfeld W, Youkilis A, Marks W, Garcia P, Barbaro N, Fountain N, Bazil C, Goodman R, McKhann G, Krishnamurthy KB, Papavassiliou S, Epstein C, Pollard J, Tonder L, Grebin J, Coffey R, Graves N, SANTE Study Group (2010) Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51:899–908

    Article  Google Scholar 

  9. Fischl B (2012) FreeSurfer. NeuroImage 62:774–781

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355

    Article  CAS  PubMed  Google Scholar 

  11. George MS, Taylor JJ, Short EB (2013) The expanding evidence base for rTMS treatment of depression. Curr Opin Psychiatry 26:13–18

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ingalhalikar M, Smith A, Parker D, Satterthwaite TD, Elliott MA, Ruparel K, Hakonarson H, Gur RE, Gur RC, Verma R (2014) Sex differences in the structural connectome of the human brain. Proc Natl Acad Sci USA 111:823–828

    Article  CAS  PubMed  Google Scholar 

  13. Jakab A, Blanc R, Berényi EL (2012) Map** changes of in vivo connectivity patterns in the human mediodorsal thalamus: correlations with higher cognitive and executive functions. Brain Imaging Behav 6:472–483

    Article  PubMed  Google Scholar 

  14. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62:782–783

    Article  PubMed  Google Scholar 

  15. Kito S, Jung J, Kobayashi T, Koga Y (2009) Fiber tracking of white matter integrity connecting the mediodorsal nucleus of the thalamus and the prefrontal cortex in schizophrenia: a diffusion tensor imaging study. Eur Psychiatry 24:269–274

    Article  PubMed  Google Scholar 

  16. Klein JC, Rushworth MFS, Behrens TEJ, Mackay CE, de Crespigny AJ, D’Arcueil H, Johansen-Berg H (2012) Topography of connections between human prefrontal cortex and mediodorsal thalamus studied with diffusion tractography. Neuroimage 52:555–564

    Google Scholar 

  17. Knickmeyer RC, Wang J, Zhu H, Geng X, Woolson S, Hamer RM, Konneker T, Styner M, Gilmore JH (2014) Impact of sex and gonadal steroids on neonatal brain structure. Cereb Cortex 24:2721–2731

    Article  PubMed  Google Scholar 

  18. Lalys F, Haegelen C, Mehri M, Drapier S, Verin M, Jannin P (2013) Anatomo-clinical atlases correlate clinical data and electrode contact coordinates: application to subthalamic deep brain stimulation. J Neurosci Methods 212:297–307

    Article  PubMed  Google Scholar 

  19. Magro E, Moreau T, Seizeur R, Zemmoura I, Gibaud B, Morandi X (2014) Connectivity within the primary motor cortex: a DTI tractography study. Surg Radiol Anat 36:125–135

    Article  PubMed  Google Scholar 

  20. Martin JL, Barbanoj JM, Pérez V, Sacristan M (2003) Transcranial magnetic stimulation for the treatment of obsessive-compulsive disorder. Cochrane Database Syst Rev

  21. Mashour GA, Walker EE, Mazurta RL (2005) Psychosurgery: past, present, and future. Brain Res Brain Res Rev 48:409–419

    Article  PubMed  Google Scholar 

  22. Mitelman SA, Byne W, Kemether EM, Hazlett EA, Buchsbaum MS (2006) Correlation between volume of the pulvinar, centromedian, and mediodorsal nuclei and cortical Brodmann’s areas in schizophrenia. Neurosci Lett 392:16–21

    Article  CAS  PubMed  Google Scholar 

  23. Nahas Z, Molloy MA, Hughes PL, Oliver NC, Arana GW, Risch SG, George MS (1999) Repetitive transcranial magnetic stimulation: perspectives for application in the treatment of bipolar and unipolar disorders. Bipolar Disord 1:73–80

    Article  CAS  PubMed  Google Scholar 

  24. Nauczyciel C, Hellier P, Morandi X, Blestel S, Drapier D, Ferre JC, Barillot C, Millet B (2011) Assessment of standard coil positioning in TMS for depression. Psychiatry Res 186:232–238

    Article  PubMed  Google Scholar 

  25. Pasnicu A, Denoyer Y, Haegelen C, Pasqualini E, Biraben A (2013) Modulation of paroxysmal activity in focal cortical dysplasia by centromedian thalamic nucleus stimulation. Epilepsy Res 104:264–268

    Article  PubMed  Google Scholar 

  26. Petrides M (2005) Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond B Biol Sci 360:781–795

    Article  PubMed  PubMed Central  Google Scholar 

  27. Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN (2012) The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex 48:46–57

    Article  PubMed  Google Scholar 

  28. Rajkowska G, Goldman-Rakic PS (1995) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. remap** of areas 9 and 46 unsing quantitative criteria. Cereb Cortex 5:307–322

    Article  CAS  PubMed  Google Scholar 

  29. Ray JP, Price JL (1993) The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 337:1–31

    Article  CAS  PubMed  Google Scholar 

  30. Salerian AJ, Altar CA (2012) The prefrontal cortex influence over subcortical and limbic regions governs antidepressant response by N = H/(M + R). Psychiatry Res 204:1–12

    Article  CAS  PubMed  Google Scholar 

  31. Sallet J, Mars RB, Nooman MA, Neubert FX, Jbabdi S, O’Reilly JX, Filippini N, Thomas AG, Rushworth MF (2013) The organization of dorsal frontal cortex in humans and macaques. The J Neurosci 33:12255–12274

    Article  CAS  PubMed  Google Scholar 

  32. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull strip** problem in MRI. Neuroimage 22:1060–1075

    Article  CAS  PubMed  Google Scholar 

  33. Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, WU-Minn HCP Consortium (2013) The WU-Minn human connectome project : an overview. NeuroImage 80:62–79

    Article  Google Scholar 

  34. **ao D, Zikopoulos B, Barbas H (2009) Lamina and molecular organization of prefrontal projections to multiple thalamic nuclei. Neuroscience 161:1067–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yelnik J, Bardinet E, Dormont D, Malandain G, Ourselin S, Tandé D, Karachi C, Ayache N, Cornu P, Agid Y (2007) A three-dimensional, histological and deformable atlas of the human basal ganglia. I. atlas construction on immunohistochemical and MRI data. Neuroimage 34:618–638

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. We wanted to thank Cécile-Marie Le Reste for her help in revising the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Jean Le Reste.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Reste, PJ., Haegelen, C., Gibaud, B. et al. Connections of the dorsolateral prefrontal cortex with the thalamus: a probabilistic tractography study. Surg Radiol Anat 38, 705–710 (2016). https://doi.org/10.1007/s00276-015-1603-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-015-1603-8

Keywords

Navigation