Log in

Role of Radioembolization in Metastatic Neuroendocrine Tumors

  • Review
  • Interventional Oncology
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

The liver is the most common site of metastasis for neuroendocrine tumors originating from the gastrointestinal tract. Neuroendocrine liver metastases (NELMs) portend a worsening clinical course, making local management important. Local treatment options include surgery, thermal ablation, and trans-catheter intra-arterial therapies, such as radioembolization. Radioembolization is generally preferred over other embolotherapies in patients with colonized biliary systems. Current best practice involves personalized treatment planning, optimizing tumor radiation absorbed dose and minimizing radiation to the normal hepatic parenchyma. As part of a multidisciplinary approach, radioembolization is a versatile embolotherapy offering neoadjuvant, palliative, and ablative treatment options for patients with NELMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pavel M, et al. ENETS consensus guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95(2):157–76.

    Article  CAS  PubMed  Google Scholar 

  2. Yao JC, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72.

    Article  PubMed  Google Scholar 

  3. Janson ET, et al. Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center. Ann Oncol. 1997;8(7):685–90.

    Article  CAS  PubMed  Google Scholar 

  4. Frilling A, Clift AK. Therapeutic strategies for neuroendocrine liver metastases. Cancer. 2015;121(8):1172–86.

    Article  CAS  PubMed  Google Scholar 

  5. Dasari A, et al. Trends in the Incidence, prevalence, and survival outcomes in patients With neuroendocrine tumors in the United States. JAMA Oncol. 2017;3(10):1335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rinke A, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID study group. J Clin Oncol. 2009;27(28):4656–63.

    Article  CAS  PubMed  Google Scholar 

  7. Kimbrough CW, et al. Influence of carcinoid syndrome on the clinical characteristics and outcomes of patients with gastroenteropancreatic neuroendocrine tumors undergoing operative resection. Surgery. 2019;165(3):657–63.

    Article  PubMed  Google Scholar 

  8. Mayo SC, Pawlik TM. Surgical management of neuroendocrine tumors: treatment of localized and metastatic disease. Oncol (Williston Park). 2011;25(9):806.

    Google Scholar 

  9. Kaçmaz E, et al. Treatment of Liver Metastases from Midgut Neuroendocrine Tumours: A Systematic Review and Meta-Analysis. J Clin Med. 2019;8(3):403.

    Article  PubMed Central  Google Scholar 

  10. Kennedy A, et al. Role of hepatic intra-arterial therapies in metastatic neuroendocrine tumours (NET): guidelines from the NET-Liver-Metastases Consensus Conference. HPB (Oxford). 2015;17(1):29–37.

    Article  Google Scholar 

  11. Cives M, et al. The Tumor Microenvironment in Neuroendocrine Tumors: Biology and Therapeutic Implications. Neuroendocrinology. 2019;109(2):83–99.

    Article  CAS  PubMed  Google Scholar 

  12. Yao JC, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet. 2016;387(10022):968–77.

    Article  CAS  PubMed  Google Scholar 

  13. Shah Manisha H, et al. Neuroendocrine and adrenal tumors, version 2.2021, NCCN clinical practice guidelines in oncology. J Nat Compr Cancer Netw. 2021;19(7):839–68. https://doi.org/10.6004/jnccn.2021.0032.

    Article  CAS  Google Scholar 

  14. Pavel M, et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31(7):844–60.

    Article  CAS  PubMed  Google Scholar 

  15. Hudson JM, et al. Stereotactic ablative radiotherapy for the management of liver metastases from neuroendocrine neoplasms: a preliminary study. Neuroendocrinology. 2021;112(2):153–60.

    Article  PubMed  Google Scholar 

  16. Memon K, et al. Radioembolization for neuroendocrine liver metastases: safety, imaging, and long-term outcomes. Int J Radiat Oncol Biol Phys. 2012;83(3):887–94.

    Article  PubMed  Google Scholar 

  17. Klaassen NJM, et al. The various therapeutic applications of the medical isotope holmium-166: a narrative review. EJNMMI Radiopharm Chem. 2019;4(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chansanti O, et al. Tumor dose response in yttrium-90 resin microsphere embolization for neuroendocrine liver metastases: a tumor-specific analysis with dose estimation using SPECT-CT. J Vasc Interv Radiol. 2017;28(11):1528–35.

    Article  PubMed  Google Scholar 

  19. Strosberg JR, et al. Radioembolization versus bland or chemoembolization for liver-dominant neuroendocrine tumors: is it an either/or question? J Nucl Med. 2021;62:1669–70.

    Article  Google Scholar 

  20. Braat A, et al. Additional holmium-166 radioembolisation after lutetium-177-dotatate in patients with neuroendocrine tumour liver metastases (HEPAR PLuS): a single-centre, single-arm, open-label, phase 2 study. Lancet Oncol. 2020;21(4):561–70.

    Article  CAS  PubMed  Google Scholar 

  21. Cholapranee A, et al. Risk of liver abscess formation in patients with prior biliary intervention following yttrium-90 radioembolization. Cardiovasc Interv Radiol. 2015;38(2):397–400.

    Article  Google Scholar 

  22. Braat A, et al. Radioembolization with (90)y resin microspheres of neuroendocrine liver metastases: international multicenter study on efficacy and toxicity. Cardiovasc Interv Radiol. 2019;42(3):413–25.

    Article  CAS  Google Scholar 

  23. Pollock RF, et al. Association between objective response rate and overall survival in metastatic neuroendocrine tumors treated with radioembolization: a systematic literature review and regression analysis. Expert Rev Anticancer Ther. 2020;20(11):997–1009.

    Article  CAS  PubMed  Google Scholar 

  24. Ingenerf M, et al. 68Ga-DOTATATE PET/CT and MRI with diffusion-weighted imaging (DWI) in Short- and long-term assessment of tumor response of neuroendocrine liver metastases (NELM) following transarterial radioembolization (TARE). Cancers. 2021;13(17):4321. https://doi.org/10.3390/cancers13174321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ebbers SC, et al. Dose-response relationship after yttrium-90-radioembolization with glass microspheres in patients with neuroendocrine tumor liver metastases. Eur J Nucl Med Mol Imaging. 2022;49(5):1700–10.

    Article  CAS  PubMed  Google Scholar 

  26. Cao CQ, et al. Radioembolization with yttrium microspheres for neuroendocrine tumour liver metastases. Br J Surg. 2010;97(4):537–43.

    Article  CAS  PubMed  Google Scholar 

  27. Chen JX, et al. Embolotherapy for neuroendocrine tumor liver metastases: prognostic factors for hepatic progression-free survival and overall survival. Cardiovasc Interv Radiol. 2017;40(1):69–80.

    Article  Google Scholar 

  28. Saxena A, et al. Factors predicting response and survival after yttrium-90 radioembolization of unresectable neuroendocrine tumor liver metastases: a critical appraisal of 48 cases. Ann Surg. 2010;251(5):910–6.

    Article  PubMed  Google Scholar 

  29. Schaarschmidt BM, et al. Y radioembolization in the treatment of neuroendocrine neoplasms: Results of an international multicenter retrospective study. J Nucl Med. 2021. https://doi.org/10.2967/jnumed.121.262561.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wong TY, et al. Long-term outcomes following 90Y radioembolization of neuroendocrine liver metastases: evaluation of the radiation-emitting SIR-spheres in non-resectable liver tumor (RESiN) registry. BMC Cancer. 2022;22(1):224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Su YK, et al. Long-term hepatotoxicity of yttrium-90 radioembolization as treatment of metastatic neuroendocrine tumor to the liver. J Vasc Interv Radiol. 2017;28(11):1520–6.

    Article  PubMed  Google Scholar 

  32. Currie BM, et al. Chronic hepatotoxicity in patients with metastatic neuroendocrine tumor: transarterial chemoembolization versus transarterial radioembolization. J Vasc Interv Radiol. 2020;31(10):1627–35.

    Article  PubMed  Google Scholar 

  33. Padia SA, et al. Yttrium-90 radiation segmentectomy for hepatic metastases: A multi-institutional study of safety and efficacy. J Surg Oncol. 2021;123(1):172–8.

    Article  PubMed  Google Scholar 

  34. Devcic Z, et al. The efficacy of hepatic 90Y resin radioembolization for metastatic neuroendocrine tumors: a meta-analysis. J Nucl Med. 2014;55(9):1404–10.

    Article  CAS  PubMed  Google Scholar 

  35. Padia SA, et al. Radioembolization of hepatic malignancies: background, quality improvement guidelines, and future directions. J Vasc Interv Radiol. 2017;28(1):1–15.

    Article  PubMed  Google Scholar 

  36. Yang TX, Chua TC, Morris DL. Radioembolization and chemoembolization for unresectable neuroendocrine liver metastases - a systematic review. Surg Oncol. 2012;21(4):299–308.

    Article  PubMed  Google Scholar 

  37. Ngo L, et al. Chemoembolization versus radioembolization for neuroendocrine liver metastases: a meta-analysis comparing clinical outcomes. Ann Surg Oncol. 2021;28(4):1950–8.

    Article  PubMed  Google Scholar 

  38. Egger ME, et al. Transarterial chemoembolization vs radioembolization for neuroendocrine liver metastases: a multi-institutional analysis. J Am Coll Surg. 2020;230(4):363–70.

    Article  PubMed  Google Scholar 

  39. Singla S, et al. Ki67 score as a potential predictor in the selection of liver-directed therapies for metastatic neuroendocrine tumors: a single institutional experience. J Gastrointest Oncol. 2016;7(3):441–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Reubi JC, et al. Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27(3):273–82.

    Article  CAS  PubMed  Google Scholar 

  41. Srirajaskanthan R, et al. Expression of somatostatin and dopamine 2 receptors in neuroendocrine tumours and the potential role for new biotherapies. Neuroendocrinology. 2009;89(3):308–14.

    Article  CAS  PubMed  Google Scholar 

  42. Valkema R, et al. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0, Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med. 2006;36(2):147–56.

    Article  PubMed  Google Scholar 

  43. Kwekkeboom DJ, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0, Tyr3] octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26(13):2124–30.

    Article  CAS  PubMed  Google Scholar 

  44. Cwikla JB, et al. Efficacy of radionuclide treatment DOTATATE Y-90 in patients with progressive metastatic gastroenteropancreatic neuroendocrine carcinomas (GEP-NETs): a phase II study. Ann Oncol. 2010;21(4):787–94.

    Article  CAS  PubMed  Google Scholar 

  45. Pfeifer AK, et al. Peptide receptor radionuclide therapy with Y-DOTATOC and (177)Lu-DOTATOC in advanced neuroendocrine tumors: results from a danish cohort treated in Switzerland. Neuroendocrinology. 2011;93(3):189–96.

    Article  CAS  PubMed  Google Scholar 

  46. Savelli G, et al. Final results of a phase 2A study for the treatment of metastatic neuroendocrine tumors with a fixed activity of 90Y-DOTA-D-Phe1-Tyr3 octreotide. Cancer. 2012;118(11):2915–24.

    Article  CAS  PubMed  Google Scholar 

  47. Delpassand ES, et al. Peptide receptor radionuclide therapy with 177Lu-DOTATATE for patients with somatostatin receptor-expressing neuroendocrine tumors: the first US phase 2 experience. Pancreas. 2014;43(4):518–25.

    Article  CAS  PubMed  Google Scholar 

  48. Ezziddin S, et al. Outcome of peptide receptor radionuclide therapy with 177Lu-octreotate in advanced grade 1/2 pancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2014;41(5):925–33.

    Article  CAS  PubMed  Google Scholar 

  49. Sabet A, et al. Specific efficacy of peptide receptor radionuclide therapy with (177)Lu-octreotate in advanced neuroendocrine tumours of the small intestine. Eur J Nucl Med Mol Imaging. 2015;42(8):1238–46.

    Article  CAS  PubMed  Google Scholar 

  50. Brabander T, et al. Long-term efficacy, survival, and safety of [(177)Lu-DOTA(0), Tyr(3)]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. Clin Cancer Res. 2017;23(16):4617–24.

    Article  CAS  PubMed  Google Scholar 

  51. Strosberg J, et al. Phase 3 Trial of (177) Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Strosberg JR, et al. Lu-Dotatate plus long-acting octreotide versus high-dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021;22(12):1752–63.

    Article  CAS  PubMed  Google Scholar 

  53. Strosberg J, et al. Impact of liver tumour burden, alkaline phosphatase elevation, and target lesion size on treatment outcomes with (177)Lu-Dotatate: an analysis of the NETTER-1 study. Eur J Nucl Med Mol Imaging. 2020;47(10):2372–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsang ES, et al. Efficacy and prognostic factors for Y-90 radioembolization (Y-90) in metastatic neuroendocrine tumors with liver metastases. Can J Gastroenterol Hepatol. 2020;2020:5104082.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Marinova M, et al. Improving quality of life in patients with pancreatic neuroendocrine tumor following peptide receptor radionuclide therapy assessed by EORTC QLQ-C30. Eur J Nucl Med Mol Imaging. 2018;45(1):38–46.

    Article  CAS  PubMed  Google Scholar 

  56. Strosberg J, et al. Health-related quality of life in patients with progressive midgut neuroendocrine tumors treated with (177)Lu-Dotatate in the phase III NETTER-1 Trial. J Clin Oncol. 2018;36(25):2578–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zandee WT, et al. Symptomatic and radiological response to 177Lu-DOTATATE for the treatment of functioning pancreatic neuroendocrine tumors. J Clin Endocrinol Metab. 2019;104(4):1336–44.

    Article  PubMed  Google Scholar 

  58. Jia Z, Wang W. Yttrium-90 radioembolization for unresectable metastatic neuroendocrine liver tumor: A systematic review. Eur J Radiol. 2018;100:23–9.

    Article  PubMed  Google Scholar 

  59. Tomozawa Y, et al. Long-term toxicity after transarterial radioembolization with yttrium-90 using resin microspheres for neuroendocrine tumor liver metastases. J Vasc Interv Radiol. 2018;29(6):858–65.

    Article  PubMed  Google Scholar 

  60. Currie BM, et al. Radioembolization-induced chronic hepatotoxicity: a single-center cohort analysis. J Vasc Interv Radiol. 2019;30(12):1915–23.

    Article  PubMed  Google Scholar 

  61. Riff BP, et al. Peptide receptor radionuclide therapy-induced hepatotoxicity in patients with metastatic neuroendocrine tumors. Clin Nucl Med. 2015;40(11):845–50.

    Article  PubMed  Google Scholar 

  62. Hamiditabar M, et al. Safety and effectiveness of 177Lu-DOTATATE peptide receptor radionuclide therapy after regional hepatic embolization in patients with somatostatin-expressing neuroendocrine tumors. Clin Nucl Med. 2017;42(11):822–8.

    Article  PubMed  Google Scholar 

  63. Braat A, et al. Radioembolization with (90)Y resin microspheres of neuroendocrine liver metastases after initial peptide receptor radionuclide therapy. Cardiovasc Intervent Radiol. 2020;43(2):246–53.

    Article  CAS  PubMed  Google Scholar 

  64. Soulen MC, et al. Safety and feasibility of integrating yttrium-90 radioembolization with capecitabine-temozolomide for grade 2 liver-dominant metastatic neuroendocrine tumors. Pancreas. 2018;47(8):980–4.

    Article  CAS  PubMed  Google Scholar 

  65. Ebbers SC, et al. Intra-arterial versus standard intravenous administration of lutetium-177-DOTA-octreotate in patients with NET liver metastases: study protocol for a multicenter, randomized controlled trial (LUTIA trial). Trials. 2020;21(1):141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thakral P, et al. Dosimetric analyses of intra-arterial versus standard intravenous administration of 177Lu-DOTATATE in patients of well differentiated neuroendocrine tumor with liver-dominant metastatic disease. Br J Radiol. 2021;94(1126):20210403.

    Article  PubMed  Google Scholar 

  67. Kennedy AS, et al. Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients. Am J Clin Oncol. 2008;31(3):271–9.

    Article  PubMed  Google Scholar 

  68. Fan KY, et al. Neuroendocrine tumor liver metastases treated with yttrium-90 radioembolization. Contemp Clin Trials. 2016;50:143–9.

    Article  PubMed  Google Scholar 

  69. King J, et al. Radioembolization with selective internal radiation microspheres for neuroendocrine liver metastases. Cancer. 2008;113(5):921–9.

    Article  PubMed  Google Scholar 

  70. Paprottka PM, et al. Radioembolization of symptomatic, unresectable neuroendocrine hepatic metastases using yttrium-90 microspheres. Cardiovasc Intervent Radiol. 2012;35(2):334–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Lewandowski.

Ethics declarations

Conflict of interst

Author RL is an advisor for Boston Scientific Corporation, BD, ABK Medical, and Alhambra Medical. Author RL has received speaker honorarium from Boston Scientific Corporation. Author RL is supported by research grant NIH R01CA233878. Author BT is an advisor to Boston Scientific Corporation, Sirtex, Johnson and Johnson, AstraZeneca, Genentech, Eisai, Histosonics, and Vivos. Author DB received research support from Sirtex Medical and Guerbet. Author DB has received speaker honorarium from Cook Medical. Author DB is a consultant to Astra-Zeneca, Sirtex, BTC, and BD. Author GEH is a consultant for Novartis, Bayer Healthcare, Curium Pharma, Canon Medical Systems Corporation, Boston Scientific, and Terumo Corporation. Author SP is a consultant for Boston Scientific Corporation, Varian Medical Systems, Teleflex Medical, and Guerbet.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for Publication

For this type of study consent for publication is not required.

Informed Consent

For this type of study informed consent is not required.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewandowski, R.J., Toskich, B.B., Brown, D.B. et al. Role of Radioembolization in Metastatic Neuroendocrine Tumors. Cardiovasc Intervent Radiol 45, 1590–1598 (2022). https://doi.org/10.1007/s00270-022-03206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-022-03206-y

Keywords

Navigation