Log in

Determination of elastic constants of single-crystal chromian spinel by resonant ultrasound spectroscopy and implications for fluid inclusion geobarometry

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We determined elastic constants of a single-crystal chromian spinel at temperatures from −15 to 45 °C through the Rectangular Parallelepiped Resonance method. The sample is a natural chromian spinel, which was separated from a mantle xenolith. Elastic constants at an ambient temperature (T = 24.0 °C) are C 11 = 264.8(1.7) GPa, C 12 = 154.5(1.8) GPa and C 44 = 142.6(0.3) GPa. All the elastic constants decrease linearly with increasing temperature. The temperature derivatives are dC 11/dT = −0.049(2) GPa/°K, dC 12/dT = −0.019(1) GPa/°K and dC 44/dT = −0.020(1) GPa/°K. As an implication of the elastic constants, we applied them to the correction of a fluid inclusion geobarometry, which utilizes residual pressure of fluid inclusion as a depth scale. Before entrainment by a magma, the fluid inclusions must have the identical fluid density in constituent minerals of a xenolith. It has been, however, pointed out that fluid density of fluid inclusions significantly varies with host mineral species. The present study elucidates that elastic constants and thermal expansion coefficients cannot explain the difference in fluid density among mineral species. The density difference would reflect the difference in the degree of plastic deformation in the minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen T, Neumann ER (2001) Fluid inclusions in mantle xenoliths. Lithos 55:301–320

    Article  Google Scholar 

  • Anderson DL (2007) New theory of the Earth. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bass JD, Weidner DJ (1984) Elasticity of single-crystal orthoferrosilite. J Geophys Res 89:4359–4371

    Article  Google Scholar 

  • Chang ZP, Barsch GR (1973) Pressure dependence of single-crystal elastic constants and anharmonic properties of spinel. J Geophys Res 78:2418–2433

    Article  Google Scholar 

  • Cynn H, Anderson OL, Nicol M (1993) Effects of cation disordering in a natural MgAl2O4 spinel observed by rectangular parallelepiped ultrasonic resonance and Raman measurements. Pure Appl Geophys 141:415–444

    Article  Google Scholar 

  • Doraiswami MS (1947) Elastic constants of magnetite, pyrite and chromite. Proc Indian Acad Sci A 25:413–416

    Google Scholar 

  • Frisillo AL, Barsch GR (1972) Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature. J Geophys Res 77:6360–6384

    Article  Google Scholar 

  • Ito T, Yoshiasa A, Yamanaka T, Nakatsuka A, Maekawa H (2000) Site preference of cation and structural varation in MgAl2-x Ga x O4 (0 ≤ x≤2) spinel solid solution. Z Anorg Allg Chem 626:42–49

    Article  Google Scholar 

  • Kobayashi T, Yamamoto J, Hirajima T, Ishibashi H, Hirano N, Lai Y, Prikhod’ko VS, Arai S (2012) Accuracy and precision of CO2 densimetry in CO2 inclusions: microthermometry vs. micro-Raman densimetry. J Raman Spectr 43:1126–1133

    Article  Google Scholar 

  • Liu HP, Schock RN, Anderson DL (1975) Temperature dependence of single-crystal spinel (MgAl2O4) elastic constants from 293 to 423 °K measured by light-sound scattering in the Raman-Nath region. Geophys J R Astr Soc 42:217–250

    Article  Google Scholar 

  • Navrotsky A (1994) Physics and chemistry of Earth materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ohno I (1976) Free vibration of a rectangular parallelepiped crystal and its application to determination of elastic constants of orthorhombic crystals. J Phys Earth 24:355–379

    Article  Google Scholar 

  • Pitzer KS, Stemer SM (1994) Equation of state valid continuously from zero to extreme pressure for H2O and CO2. J Chem Phys 101:3111–3116

    Article  Google Scholar 

  • Roedder E (1983) Geobarometry of ultramafic xenoliths from Loihi Seamount, Hawaii, on the basis of CO2 inclusions in olivine. Earth Planet Sci Lett 66:369–379

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Skimmer BJ (1966) Handbook of physical constants. Geol Soc Am Mem 97:78–96

    Google Scholar 

  • Sumino Y (1979) The elastic constants of Mn2SiO4, Fe2SiO4 and Ca2SiO4, and the elastic properties of olivine group minerals at high temperature. J Phys Earth 27:209–238

    Article  Google Scholar 

  • Sumino Y, Ohno I, Goto T, Kumazawa M (1976) Measurement of elastic constants and internal frictions on single-crystal MgO by rectangular parallelepiped resonance. J Phys Earth 24:263–273

    Article  Google Scholar 

  • Suzuki I, Kumazawa M (1980) Anomalous thermal expansion in spinel MgAl2O4. Phys Chem Miner 5:279–284

    Google Scholar 

  • Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. N Jahrb Miner Abhand 172:381–408

    Google Scholar 

  • Uchida H, Lavina B, Downs RT, Chelsy J (2005) Single-crystal X-ray diffraction of spinels from the San Carlos volcanic field, Arizona: spinel as a geothermometer. Am Miner 90:1900–1908

    Article  Google Scholar 

  • Visscher WM, Migliori A, Bell TM, Reinert RA (1991) On the normal modes of free vibration of inhomogeneous and anisotropic elastic objects. J Acoust Soc Am 90:2154–2162

    Article  Google Scholar 

  • Wang H, Simmons G (1972) Elasticity of some mantle crystal structures, 1. Pleonaste and hercynite spinel. J Geophys Res 77:4379–4392

    Article  Google Scholar 

  • Webb SL, Jackson I (1993) The pressure dependence of the elastic moduli of single-crystal orthopyroxene (Mg0.8Fe0.2)SiO3. Europ J Min 5:1111–1120

    Article  Google Scholar 

  • Weidner DJ, Bass JD, Vaughan MT (1982) The effect of crystal structure and composition on elastic properties of silicates. In: Akimoto S, Manghnani M (eds) High pressure research in geophysics. Center for Academic Publication Japan, Tokyo, pp 125–133

    Chapter  Google Scholar 

  • Yamamoto J, Kagi H (2008) Application of densimetry using micro-Raman spectroscopy for CO2 fluid inclusions: a probe for elastic strength of mantle minerals. Eur J Miner 20:529–535

    Article  Google Scholar 

  • Yamamoto J, Kagi H, Kaneoka I, Lai Y, Prikhod’ko VS, Arai S (2002) Fossil pressures of fluid inclusions in mantle xenoliths exhibiting rheology of mantle minerals: implications for the geobarometry of mantle minerals using micro-Raman spectroscopy. Earth Planet Sci Lett 198:511–519

    Article  Google Scholar 

  • Yamamoto J, Nakai S, Nishimura K, Kaneoka I, Kagi H, Sato K, Okumura T, Prikhod’ko VS, Arai S (2009) Intergranular trace elements in mantle xenoliths from Russian Far East: example for mantle metasomatism by hydrous melt. Island Arc 18:225–241

    Article  Google Scholar 

  • Yamamoto J, Ostuka K, Ohfuji H, Ishibashi H, Hirano N, Kagi H (2011) Retentivity of CO2 in fluid inclusions in mantle minerals. Eur J Miner 23:805–815

    Article  Google Scholar 

  • Yamamoto J, Nishimura K, Ishibashi H, Kagi H, Arai S, Prikhod’ko VS (2012) Thermal structure beneath Far Eastern Russia inferred from geothermobarometric analysis of mantle xenoliths: direct evidence for high geothermal gradient in backarc lithosphere. Tectonophys 554–557:74–82

    Article  Google Scholar 

  • Yamanaka T, Takeuchi Y (1983) Order-disorder transition in MgAl2O4 spinel at high temperatures up to 1700 °C. Z Kristallogr 165:65–78

    Article  Google Scholar 

  • Yoneda A (1990) Pressure derivatives of elastic constants of single crystal MgO and MgAl2O4. J Phys Earth 38:19–55

    Article  Google Scholar 

  • Yoneda A (2002) Intrinsic eigenvibration frequency in the resonant ultrasound spectroscopy: evidence for a coupling vibration between a sample and transducers. Earth Planets Space 54:763–770

    Article  Google Scholar 

  • Yoneda A, Aizawa Y, Rahman MM, Sakai S (2007) High frequency resonant ultrasound spectroscopy to 50 MHz: Experimental developments and analytical refinement. Jpn J Appl Phys 46:7898–7903

    Article  Google Scholar 

  • Yoshiasa A, Ito T, Sugiyama K, Nakatsuka A, Okube M, Kurosawa M, Katsura T (2010) A peculiar site preference of Boron in MgAl2-x B x O4 (x = 0.0, 0.11 and 0.13) spinel under high-pressure and high-temperature. Z Anorg Allg Chem 636:472–475

    Article  Google Scholar 

  • Zhang Y (1998) Mechanical and phase equilibria in inclusion-host systems. Earth Planet Sci Lett 157:209–222

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Okuchi, D. Yamazaki and T. Yoshino for their help in analyzing our sample. This study was supported from the Institute for Study of the Earth’s Interior, Okayama University for long-term Joint-Use Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Watanabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ono, K., Harada, Y., Yoneda, A. et al. Determination of elastic constants of single-crystal chromian spinel by resonant ultrasound spectroscopy and implications for fluid inclusion geobarometry. Phys Chem Minerals 45, 237–247 (2018). https://doi.org/10.1007/s00269-017-0912-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0912-3

Keywords

Navigation