Log in

Reversal of Diabetes in Mice by Intrahepatic Injection of Bone-derived GFP-murine Mesenchymal Stem Cells Infected with the Recombinant Retrovirus-carrying Human Insulin Gene

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

The objective of this study was to assess the effect of intrahepatic injection of bone-derived green fluorescent protein (GFP)-transgenic murine mesenchymal stem cells (GFP-mMSCs) containing the human insulin(ins) gene in streptozotocin-induced diabetic mice.

Methods

GFP-mMSCs were isolated from the bone marrow of GFP transgenic mice, expanded, and transfected with a recombinant retrovirus MSCV carrying the human insulin gene. C57BL/6J mice were made diabetic by an intraperitoneal administration of 160 mg/kg streptozotocin (STZ), followed by intrahepatic injection of transfected GFP-mMSCs. The variations in body weight and the blood glucose and serum insulin levels were determined after cell transplantation. GFP-mMSCs survival and human insulin expression in liver tissues were examined by fluorescent microscopy and immunohistochemistry.

Results

The body weight in diabetic mice that received GFP-mMSCs harboring the human insulin gene was increased by 6% within 6 weeks after treatment, and the average blood glucose levels in these animals were 10.40 ± 2.80 mmol/l (day 7) and 6.50 ± 0.89 mmol/l (day 42), respectively, while the average values of blood glucose in diabetic animals without treatment were 26.80 ± 2.49 mmol/l (day 7) and 25.40 ± 4.10 mmol/l (day 42), showing a significant difference (p < 0.05). Moreover, secretion of human insulin of GFP-mMSCs in serum and animal liver was detected by radioimmunoassay (RIA) and immunohistochemistry (IHC).

Conclusions

Experimental diabetes could be relieved effectively for up to 6 weeks by intrahepatic transplantation of murine mesenchymal stem cells expressing human insulin. This study implies a novel approach of gene therapy for type I diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hornum L, Markholst H (2004) New autoimmune genes and the pathogenesis of type 1 diabetes. Curr Diab Rep 4:135–142

    Article  PubMed  Google Scholar 

  2. Roep BO (2003) The role of T-cells in the pathogenesis of type 1 diabetes: from cause to cure. Diabetologia 46:305–321

    PubMed  CAS  Google Scholar 

  3. Gillespie KM (2006) Type 1 diabetes: pathogenesis and prevention. Can Med Assoc J 175:165–170

    Article  Google Scholar 

  4. Rother KI, Harlan DM (2004) Challenges facing islet transplantation for the treatment of type 1 diabetes mellitus. J Clin Invest 114:877–883

    Article  PubMed  CAS  Google Scholar 

  5. Lakey JR, Mirbolooki M, Shapiro AM (2006) Current status of clinical islet cell transplantation. Methods Mol Biol 333:47–104

    PubMed  Google Scholar 

  6. Abai AM, Hobart PM, Barnhart KM (1999) Insulin delivery with plasmid DNA. Hum Gene Ther 10:2637–2649

    Article  PubMed  CAS  Google Scholar 

  7. Goldfine ID, German MS, Tseng HC, et al. (1997) The endocrine secretion of human insulin and growth hormone by exocrine glands of the gastrointestinal tract. Nat Biotechnol 15:1378–1382

    Article  PubMed  CAS  Google Scholar 

  8. Mitanchez D, Chen R, Massias JF, et al. (1998) Regulated expression of mature human insulin in the liver of transgenic mice. FEBS Lett 421:285–289

    Article  PubMed  CAS  Google Scholar 

  9. Valera A, Fillat C, Costa C, et al. (1994) Regulated expression of human insulin in the liver of transgenic mice corrects diabetic alterations. FASEB J 8:440–447

    PubMed  CAS  Google Scholar 

  10. Wu L, Nicholson W, Wu CY, et al. (2003) Engineering physiologically regulated insulin secretion in non-beta cells by expressing glucagon-like peptide 1 receptor. Gene Ther 10:1712–1720

    Article  PubMed  CAS  Google Scholar 

  11. Cheung AT, Dayanandan B, Lewis JT, et al. (2000) Glucose-dependent insulin release from genetically engineered K cells. Science 290:1959–1962

    Article  PubMed  CAS  Google Scholar 

  12. Lu YC, Sternini C, Rozengurt E, et al. (2005) Release of transgenic human insulin from gastric G cells: a novel approach for the amelioration of diabetes. Endocrinology 146:2610–2619

    Article  PubMed  CAS  Google Scholar 

  13. Grove JE, Bruscia E, Krause DS (2004) Plasticity of bone marrow-derived stem cells. Stem Cells 22:487–500

    Article  PubMed  Google Scholar 

  14. Vats A, Bielby RC, Tolley NS, et al. (2005) Stem cells. Lancet 366:592–602

    Article  PubMed  CAS  Google Scholar 

  15. Jorgensen C, Djouad F, Apparailly F, et al. (2003) Engineering mesenchymal stem cells for immunotherapy. Gene Ther 10:928–931

    Article  PubMed  CAS  Google Scholar 

  16. Shah R, **dal RM (2003) Reversal of diabetes in the rat by injection of hematopoietic stem cells infected with recombinant adeno-associated virus containing the preproinsulin II gene. Pancreatology 3:422–428

    Article  PubMed  CAS  Google Scholar 

  17. Gervaix A, Schwarz L, Law P, et al. (1997) Gene therapy targeting peripheral blood CD34+ hematopoietic stem cells of HIV-infected individuals. Hum Gene Ther 8:2229–2238

    Article  PubMed  CAS  Google Scholar 

  18. Kang J, Wither J, Hozumi N (1990) Long-term expression of a T-cell receptor beta-chain gene in mice reconstituted with retrovirus-infected hematopoietic stem cells. Proc Natl Acad Sci USA 87:9803–9807

    Article  PubMed  CAS  Google Scholar 

  19. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20

    Article  PubMed  CAS  Google Scholar 

  20. Lu Y, Wang Z, Zhu M (2006) Human bone marrow mesenchymal stem cells transfected with human insulin genes can secrete insulin stably. Ann Clin Lab Sci 36:127–136

    PubMed  CAS  Google Scholar 

  21. Guo Z, Li H, Li X, et al. (2006) In vitro characteristics and in vivo immunosuppressive activity of compact bone-derived murine mesenchymal progenitor cells. Stem Cells 24:992–1000

    Article  PubMed  Google Scholar 

  22. Sugiyama A, Hattori S, Tanaka S, et al. (1997) Defective adenoassociated viral-mediated transfection of insulin gene by direct injection into liver parenchyma decreases blood glucose of diabetic mice. Horm Metab Res 29:599–603

    Article  PubMed  CAS  Google Scholar 

  23. Hamada H, Kobune M, Nakamura K, et al. (2005) Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci 96:149–156

    Article  PubMed  CAS  Google Scholar 

  24. Prockop DJ (2003) Further proof of the plasticity of adult stem cells and their role in tissue repair. J Cell Biol 160:807–809

    Article  PubMed  CAS  Google Scholar 

  25. Jorgensen C, Djouad F, Apparailly F, et al. (2003) Engineering mesenchymal stem cells for immunotherapy. Gene Ther 10:928–931

    Article  PubMed  CAS  Google Scholar 

  26. Urban SV, Kiss J, Vas V, et al. (2006) [Stem cell therapy for diabetes mellitus: progress, prospects and challenges]. Orv Hetil 147:791–797

    PubMed  Google Scholar 

  27. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  PubMed  CAS  Google Scholar 

  28. Tomanin R, Scarpa M (2004) Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr Gene Ther 4:357–372

    PubMed  CAS  Google Scholar 

  29. Wells DJ (2004) Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 11:1363–1369

    Article  PubMed  CAS  Google Scholar 

  30. Plumas J, Chaperot L, Richard MJ, et al. (2005) Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 19:1597–604

    Article  PubMed  CAS  Google Scholar 

  31. Zappia E, Casazza S, Pedemonte E, et al. (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106:1755–1761

    Article  PubMed  CAS  Google Scholar 

  32. Saito T, Kuang JQ, Bittira B, et al. (2002) Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg 74:19–24; discussion 24

    Article  PubMed  Google Scholar 

  33. Fandrich F, Lin X, Chai GX, et al. (2002) Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nat Med 8:171–178

    Article  PubMed  CAS  Google Scholar 

  34. Harrington K, Alvarez-Vallina L, Crittendent NM, et al. (2002) Cells as vehicles for cancer gene therapy: the missing link between targeted vectors and systemic delivery. J Hum Gene Ther 13:1263–1280

    Article  CAS  Google Scholar 

  35. Lee K, Majumdar MK, Buyaner D, et al. (2001) Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. Mol Ther 3:857–866

    Article  PubMed  CAS  Google Scholar 

  36. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96:10711–10716

    Article  PubMed  CAS  Google Scholar 

  37. Gao Z, Golob J, Tanavde VM, et al. (2001) High levels of transgene expression following transduction of long-term NOD/SCID-repopulating human cells with a modified lentiviral vector. Stem Cells 19:247–259

    Article  PubMed  CAS  Google Scholar 

  38. Pannell D, Osborne CS, Yao S, et al. (2000) Retrovirus vector silencing is de novo methylase independent and marked by a repressive histone code. EMBO J 19:5884–5894

    Article  PubMed  CAS  Google Scholar 

  39. Hawley RG (2001) Progress toward vector design for hematopoietic stem cell gene therapy. Curr Gene Ther 1:1–17

    Article  PubMed  CAS  Google Scholar 

  40. Kan Z, Liu TJ (1999) Video microscopy of tumor metastasis: using the green fluorescent protein (GFP) gene as a cancer-cell-labeling system. Clin Exp Metastasis 17:49–55

    Article  PubMed  CAS  Google Scholar 

  41. Lin Y, Chen X, Yan Z, et al. (2006) Multilineage differentiation of adipose-derived stromal cells from GFP transgenic mice. Mol Cell Biochem 285:69–78

    Article  PubMed  CAS  Google Scholar 

  42. Kadowaki A, Tsukazaki T, Hirata K, et al. (2004) Isolation and characterization of a mesenchymal cell line that differentiates into osteoblasts in response to BMP-2 from calvariae of GFP transgenic mice. Bone 34:993–1003

    Article  PubMed  CAS  Google Scholar 

  43. Ewing P, Wilke A, Brockhoff G, et al. (2003) Isolation and transplantation of allogeneic pulmonary endothelium derived from GFP transgenic mice. J Immunol Methods 283:307–315

    Article  PubMed  CAS  Google Scholar 

  44. Deutsch G, Jung J, Zheng M, et al. (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128:871–881

    PubMed  CAS  Google Scholar 

  45. Jung J, Zheng M, Goldfarb M, et al. (1999) Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284:1998–2003

    Article  PubMed  CAS  Google Scholar 

  46. Rao MS, Dwivedi RS, Yeldandi AV, et al. (1989) Role of periductal and ductular epithelial cells of the adult rat pancreas in pancreatic hepatocyte lineage. A change in the differentiation commitment. Am J Pathol 134:1069–1086

    PubMed  CAS  Google Scholar 

  47. Krakowski ML, Kritzik MR, Jones EM, et al. (1999) Pancreatic expression of keratinocyte growth factor leads to differentiation of islet hepatocytes and proliferation of duct cells. Am J Pathol 154:683–691

    PubMed  CAS  Google Scholar 

  48. Dabeva MD, Hwang SG, Vasa SR, et al. (1997) Differentiation of pancreatic epithelial progenitor cells into hepatocytes following transplantation into rat liver. Proc Natl Acad Sci USA 94:7356–7361

    Article  PubMed  CAS  Google Scholar 

  49. Wang X, Al-Dhalimy M, Lagasse E, et al. (2001) Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells. Am J Pathol 158:571–579

    PubMed  CAS  Google Scholar 

  50. Suzuki A, Zheng YW, Kaneko S, et al. (2002) Clonal identification and characterization of self-renewing pluripotent stem cells in the develo** liver. J Cell Biol 156:173–184

    Article  PubMed  CAS  Google Scholar 

  51. Lee HC, Kim SJ, Kim KS, et al. (2000) Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue. Nature 408:483–488

    Article  PubMed  CAS  Google Scholar 

  52. Van Damme A, Chuah MK, Dell’accio F, et al. (2003) Bone marrow mesenchymal cells for haemophilia A gene therapy using retroviral vectors with modified long-terminal repeats. Haemophilia 9:94–103; Erratum. Haemophilia 2003;9:345

    Article  PubMed  Google Scholar 

  53. Kintsurashvili E, Zhou D, Wheeler MB, et al. (1998) Genetic engineering of glucose-stimulated insulin secretion in Chinese hamster ovary cells. Artif Cells Blood Substit Immobil Biotechnol 26:329–40

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Lu, Y., Ding, F. et al. Reversal of Diabetes in Mice by Intrahepatic Injection of Bone-derived GFP-murine Mesenchymal Stem Cells Infected with the Recombinant Retrovirus-carrying Human Insulin Gene. World J Surg 31, 1872–1882 (2007). https://doi.org/10.1007/s00268-007-9168-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-007-9168-2

Keywords

Navigation