Log in

Determining association networks in social animals: choosing spatial–temporal criteria and sampling rates

  • Methods
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Social Network Analysis has become an important methodological tool for advancing our understanding of human and animal group behaviour. However, researchers tend to rely on arbitrary distance and time measures when defining ‘contacts’ or ‘associations’ between individuals based on preliminary observation. Otherwise, criteria are chosen on the basis of the communication range of sensor devices (e.g. bluetooth communication ranges) or the sampling frequencies of collection devices (e.g. Global Positioning System devices). Thus, researchers lack an established protocol for determining both relevant association distances and minimum sampling rates required to accurately represent the network structure under investigation. In this paper, we demonstrate how researchers can use experimental and statistical methods to establish spatial and temporal association patterns and thus correctly characterise social networks in both time and space. To do this, we first perform a mixing experiment with Merino sheep (Ovis aries) and use a community detection algorithm that allows us to identify the spatial and temporal distance at which we can best identify clusters of previously familiar sheep. This turns out to be within 2–3 m of each other for at least 3 min. We then calculate the network graph entropy rate—a measure of ease of spreading of information (e.g. a disease) in a network—to determine the minimum sampling rate required to capture the variability observed in our sheep networks during distinct activity phases. Our results indicate the need for sampling intervals of less than a minute apart. The tools that we employ are versatile and could be applied to a wide range of species and social network datasets, thus allowing an increase in both the accuracy and efficiency of data collection when exploring spatial association patterns in gregarious species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altmann J (1974) Observational study of behavior—sampling methods. Behaviour 49(3–4):227–267

    Article  PubMed  CAS  Google Scholar 

  • Aureli F, Schaffner CM, Boesch C, Bearder SK, Call J, Chapman CA, Connor R, Di Fiore A, Dunbar RIM, Henzi SP, Holekamp K, Korstjens AH, Layton R, Lee P, Lehmann J, Manson JH, Ramos-Fernandez G, Strier KB, Van Schaik CP (2008) Fission-fusion dynamics new research frameworks. Curr Anthropol 49(4):627–654. doi:10.1086/586708

    Article  Google Scholar 

  • Buijs S, Keeling LJ, Vangestel C, Baert J, Vangeyte J, Tuyttens FAM (2010) Resting or hiding? Why broiler chickens stay near walls and how density affects this. Appl Anim Behav Sci 124(3–4):97–103. doi:10.1016/j.applanim.2010.02.007

    Article  Google Scholar 

  • Burrus C (2010) Fast fourier transforms. Connexions. http://cnx.org/content/col10550/1.21/

  • Croft DP, Arrowsmith BJ, Bielby J, Skinner K, White E, Couzin ID, Magurran AE, Ramnarine I, Krause J (2003) Mechanisms underlying shoal composition in the Trinidadian guppy, Poecilia reticulata. Oikos 100(3):429–438

    Article  Google Scholar 

  • Croft DP, Krause J, James R (2004) Social networks in the guppy (Poecilia reticulata). Proc Biol Sci 271:S516–S519

    Article  PubMed  Google Scholar 

  • Delcourt J, Becco C, Vandewalle N, Poncin P (2009) A video multitracking system for quantification of individual behavior in a large fish shoal: advantages and limits. Behav Res Meth 41(1):228–235. doi:10.3758/brm.41.1.228

    Article  Google Scholar 

  • Drewe JA (2010) Who infects whom? Social networks and tuberculosis transmission in wild meerkats. Proc Biol Sci 277(1681):633–642. doi:10.1098/rspb.2009.1775

    Article  PubMed  Google Scholar 

  • Faust K, Skvoretz J (2002) Comparing networks across space and time, size and species. Sociol Methodol 32:267–299

    Article  Google Scholar 

  • Febrer K, Jones TA, Donnelly CA, Dawkins MS (2006) Forced to crowd or choosing to cluster? Spatial distribution indicates social attraction in broiler chickens. Anim Behav 72:1291–1300. doi:10.1016/j.anbehav.2006.03.019

    Article  Google Scholar 

  • Franks DW, Ruxton GD, James R (2010) Sampling animal association networks with the gambit of the group. Behav Ecol Sociobiol 64(3):493–503. doi:10.1007/s00265-009-0865-8

    Article  Google Scholar 

  • Franz M, Nunn CL (2009) Network-based diffusion analysis: a new method for detecting social learning. Proc Biol Sci 276(1663):1829–1836. doi:10.1098/rspb.2008.1824

    Article  PubMed  Google Scholar 

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99(12):7821–7826. doi:10.1073/pnas.122653799

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Gardenes J, Latora V (2008) Entropy rate of diffusion processes on complex networks. Phys Rev E 78(6):065102

    Article  Google Scholar 

  • Hui P, Chaintreau A, Scott J, Gass R, Crowcroft J, Diot C (2005) Pocket switched networks and the consequences of human mobility in conference environments. In: SIGCOMM 2005, Philadelphia, PA

  • James R, Croft DP, Krause J (2009) Potential banana skins in animal social network analysis. Behav Ecol Sociobiol 63(7):989–997. doi:10.1007/s00265-009-0742-5

    Article  Google Scholar 

  • Kaplan E, Hegarty C (2008) Understanding GPS principles and applications. Artech House, Norwood

    Google Scholar 

  • Kasper C, Voelkl B (2009) A social network analysis of primate groups. Primates 50(4):343–356. doi:10.1007/s10329-009-0153-2

    Article  PubMed  Google Scholar 

  • Kendrick KM, Atkins K, Hinton MR, Heavens P, Keverne B (1996) Are faces special for sheep? Evidence from facial and object discrimination learning tests showing effects of inversion and social familiarity. Behav Process 38(1):19–35

    Article  Google Scholar 

  • Kendrick KM, da Costa AP, Leigh AE, Hinton MR, Peirce JW (2001) Sheep don't forget a face. Nature 414(6860):165–166

    Article  PubMed  CAS  Google Scholar 

  • Kerth G, Konig B (1999) Fission, fusion and nonrandom associations in female Bechstein's bats (Myotis bechsteinii). Behaviour 136:1187–1202

    Article  Google Scholar 

  • Krause J, Lusseau D, James R (2009) Animal social networks: an introduction. Behav Ecol Sociobiol 63(7):967–973. doi:10.1007/s00265-009-0747-0

    Article  Google Scholar 

  • Krause J, James R, Croft DP (2010) Personality in the context of social networks. Phil Trans Biol Sci 365:4099–4106. doi:10.1098/rstb.2010.0216

    Article  CAS  Google Scholar 

  • Krause J, Wilson A, Croft DP (2011) New technology facilitates study of social networks. Trends Ecol Evol 26:5–6

    Article  PubMed  Google Scholar 

  • Leone EH, Estevez I (2008) Use of space in the domestic fowl: separating the effects of enclosure size, group size and density. Anim Behav 76:1673–1682. doi:10.1016/j.anbehav.2008.08.004

    Article  Google Scholar 

  • Ligout S, Porter RH (2004) The role of visual cues in lambs discrimination between individual agemates. Behaviour 141:617–632

    Article  Google Scholar 

  • Lynch JJ, Hinch GN (1992) The behaviour of sheep. CAB International

  • Miller NY, Gerlai R (2008) Oscillations in shoal cohesion in zebrafish (Danio rerio). Behav Brain Res 193(1):148–151. doi:10.1016/j.bbr.2008.05.004

    Article  PubMed  Google Scholar 

  • Nagy M, Akos Z, Biro D, Vicsek T (2010) Hierarchical group dynamics in pigeon flocks. Nature 464(7290):U890–U899. doi:10.1038/nature08891

    Article  Google Scholar 

  • Naug D (2008) Structure of the social network and its influence on transmission dynamics in a honeybee colony. Behav Ecol Sociobiol 62(11):1719–1725. doi:10.1007/s00265-008-0600-x

    Article  Google Scholar 

  • Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89(20):208701. doi:10.1103/PhysRevLett.89.208701

    Article  PubMed  CAS  Google Scholar 

  • Pásztor B, Mottola L, Mascolo C, Picco GP, Ellwood S, Macdonald DW (2010) Selective reprogramming of mobile sensor networks through social community detection. Paper presented at the 7th European Conference on Wireless Sensor Networks (EWSN2010). Coimbra, Portugal

  • Perreault C (2010) A note on reconstructing animal social networks from independent small-group observations. Anim Behav 80(3):551–562. doi:10.1016/j.anbehav.2010.06.020

    Article  Google Scholar 

  • Riding TAC, Dennis TE, Stewart CL, Walker MM, Montgomery JC (2009) Tracking fish using ‘buoy-based’ GPS telemetry. Mar Ecol Prog Ser 377:255–262. doi:10.3354/meps07809

    Article  Google Scholar 

  • Rose LM (2000) Behavioral sampling in the field: continuous focal versus focal interval sampling. Behaviour 137:153–180

    Article  Google Scholar 

  • Star KDC (1999) The role of infectious aerosols in disease transmission in pigs. Vet J 158(3):164–181

    Article  Google Scholar 

  • Sueur C, Jacobs A, Amblard F, Petit O, King AJ (2011) How can social network analysis improve the study of primate behavior? doi:10.1002/ajp.20915

  • Tan HL, Wilson AM, Lowe J (2008) Measurement of stride parameters using a wearable GPS and inertial measurement unit. J Biomech 41(7):1398–1406. doi:10.1016/j.jbiomech.2008.02.021

    Article  PubMed  Google Scholar 

  • Taubert J (2010) Evidence of human-like, holistic face processing in spider monkeys (Ateles geoffroyi). J Comp Psychol 124(1):57–65. doi:10.1037/a0017704

    Article  PubMed  Google Scholar 

  • Thom MD, Hurst JL (2004) Individual recognition by scent. Ann Zool Fenn 41(6):765–787

    Google Scholar 

  • Tyler S (1979) Time-sampling—matter of convention. Anim Behav 27:801–810

    Article  Google Scholar 

  • Vital C, Martins EP (2009) UCINET for windows: software for social network analysis. Ethology 115(4):347–355. doi:10.1111/j.1439-0310.2009.01613.x

    Article  Google Scholar 

  • Voelkl B, Noe R (2010) Simulation of information propagation in real-life primate networks: longevity, fecundity, fidelity. Behav Ecol Sociobiol 64(9):1449–1459. doi:10.1007/s00265-010-0960-x

    Article  Google Scholar 

  • Wey T, Blumstein DT, Shen W, Jordan F (2008) Social network analysis of animal behaviour: a promising tool for the study of sociality. Anim Behav 75:333–344. doi:10.1016/j.anbehav.2007.06.020

    Article  Google Scholar 

  • Whitehead H (2009) SOCPROG programs: analysing animal social structures. Behav Ecol Sociobiol 63(5):765–778. doi:10.1007/s00265-008-0697-y

    Article  Google Scholar 

  • Wilkinson A, Specht HL, Huber L (2010) Pigeons can discriminate group mates from strangers using the concept of familiarity. Anim Behav 80(1):109–115. doi:10.1016/j.anbehav.2010.04.006

    Article  Google Scholar 

  • Willis CKR, Brigham RM (2004) Roost switching, roost sharing and social cohesion: forest-dwelling big brown bats, Eptesicus fuscus, conform to the fission-fusion model. Anim Behav 68:495–505

    Article  Google Scholar 

  • Yasuda T, Arai N (2005) Fine-scale tracking of marine turtles using GPS-argos PTTs. Zool Sci 22(5):547–553

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to the Structure and Motion Laboratory at the Royal Veterinary College, Kyle Roskilly for help with the GPS measurement equipment and post-processing tools and Skye Rudiger and all of the staff at South Australian Research Development Institute (SARDI) for the support of our fieldwork. Thanks also to Declan McKeever for the discussions on transmission distances of infectious diseases and to Julian Drewe and two anonymous reviewers for their constructive feedback on an earlier version of this manuscript. This work was funded by CHDI Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. King.

Additional information

Communicated by J. Krause

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haddadi, H., King, A.J., Wills, A.P. et al. Determining association networks in social animals: choosing spatial–temporal criteria and sampling rates. Behav Ecol Sociobiol 65, 1659–1668 (2011). https://doi.org/10.1007/s00265-011-1193-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-011-1193-3

Keywords

Navigation