Log in

Augmented versus non-augmented Trochanteric Fixation Nail-Advanced (TFNA) nails for treating trochanteric fractures in patients over sixty-five years of age

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 13 March 2024

Abstract

Purpose

Intramedullary nailing is a common treatment for pertrochanteric fractures. However, implant-related mechanical failures, such as cut-out and cut-through, lead to higher rates of revision surgery, loss of autonomy, and mortality. Cemented augmentation enhances the bone-implant interface. This study compared the frequency of mechanical failures between augmented and non-augmented Trochanteric Fixation Nail-Advanced (TFNA) nails.

Methods

This descriptive, retrospective study at a level 1 trauma centre included patients aged > 65 years with pertrochanteric fractures treated by a short augmented or non-augmented TFNA nail. The primary outcome was the comparison of cut-out or cut-through rates between groups at three and six months postoperatively.

Results

Of the 181 patients analysed, 103 had augmented TFNA nails and 78 had non-augmented TFNA nails. There were no statistically significant differences between groups in terms of demographic characteristics, AO/OTA classification, or quality of reduction. The failure rate was significantly lower in the augmented group than in the non-augmented group: 1 (0.97%) versus 9 (11.54%) (p = 0.005). At six months postoperatively, there was no significant difference between the two groups concerning functional recovery, as measured by the Parker and EuroQoL 5-Dimensions scores.

Conclusions

For patients aged over 65 years, the use of the augmented TFNA nail may reduce the risk of fixation failures such as cut-out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the data are available.

References  

  1. Masson E Fracture de l’extrémité supérieure du fémur de l’adulte. In: EM-Consulte. https://www.em-consulte.com/article/883611/fracture-de-l-extremite-superieure-du-femur-de-l-a. Accessed 2 Aug 2022

  2. Murena L, Moretti A, Meo F et al (2018) Predictors of cut-out after cephalomedullary nail fixation of pertrochanteric fractures: a retrospective study of 813 patients. Arch Orthop Trauma Surg 138:351–359. https://doi.org/10.1007/s00402-017-2863-z

    Article  PubMed  Google Scholar 

  3. Court-Brown CM, Caesar B (2006) Epidemiology of adult fractures: a review. Injury 37:691–697. https://doi.org/10.1016/j.injury.2006.04.130

    Article  PubMed  Google Scholar 

  4. González-Zabaleta J, Pita-Fernandez S, Seoane-Pillado T et al (2016) Comorbidity as a predictor of mortality and mobility after hip fracture. Geriatr Gerontol Int 16:561–569. https://doi.org/10.1111/ggi.12510

    Article  PubMed  Google Scholar 

  5. Simon P, Gouin F, Veillard D et al (2008) Femoral neck fractures in patients over 50 years old. Rev Chir Orthop Reparatrice Appar Mot 94(Suppl):S108-132. https://doi.org/10.1016/j.rco.2008.06.006

    Article  PubMed  Google Scholar 

  6. Azagra R, López-Expósito F, Martin-Sánchez JC et al (2014) Changing trends in the epidemiology of hip fracture in Spain. Osteoporos Int 25:1267–1274. https://doi.org/10.1007/s00198-013-2586-0

    Article  CAS  PubMed  Google Scholar 

  7. Anglen JO, Weinstein JN, American Board of Orthopaedic Surgery Research Committee (2008) Nail or plate fixation of intertrochanteric hip fractures: changing pattern of practice. A review of the American Board of Orthopaedic Surgery Database. J Bone Joint Surg Am 90:700–707. https://doi.org/10.2106/JBJS.G.00517

    Article  Google Scholar 

  8. Liu W, Zhou D, Liu F et al (2013) Mechanical complications of intertrochanteric hip fractures treated with trochanteric femoral nails. J Trauma Acute Care Surg 75:304–310. https://doi.org/10.1097/TA.0b013e31829a2c43

    Article  PubMed  Google Scholar 

  9. Schipper IB, Steyerberg EW, Castelein RM et al (2004) Treatment of unstable trochanteric fractures. Randomised comparison of the gamma nail and the proximal femoral nail. J Bone Joint Surg Br 86:86–94

    Article  CAS  PubMed  Google Scholar 

  10. Frei H-C, Hotz T, Cadosch D et al (2012) Central head perforation, or “cut through”, caused by the helical blade of the proximal femoral nail antirotation. J Orthop Trauma 26:e102-107. https://doi.org/10.1097/BOT.0b013e31822c53c1

    Article  PubMed  Google Scholar 

  11. Werner-Tutschku W, Lajtai G, Schmiedhuber G et al (2002) Intra- and perioperative complications in the stabilization of per- and subtrochanteric femoral fractures by means of PFN. Unfallchirurg 105:881–885. https://doi.org/10.1007/s00113-002-0416-5

    Article  CAS  PubMed  Google Scholar 

  12. Megas P, Kaisidis A, Zouboulis P et al (2005) Comparative study of the treatment of pertrochanteric fractures–trochanteric gamma nail vs. proximal femoral nail. Z Orthop Ihre Grenzgeb 143:252–257. https://doi.org/10.1055/s-2005-836453

    Article  CAS  PubMed  Google Scholar 

  13. Chehade MJ, Carbone T, Awwad D et al (2015) Influence of fracture stability on early patient mortality and reoperation after pertrochanteric and intertrochanteric hip fractures. J Orthop Trauma 29:538–543. https://doi.org/10.1097/BOT.0000000000000359

    Article  PubMed  Google Scholar 

  14. Stoffel KK, Leys T, Damen N et al (2008) A new technique for cement augmentation of the sliding hip screw in proximal femur fractures. Clin Biomech (Bristol, Avon) 23:45–51. https://doi.org/10.1016/j.clinbiomech.2007.08.014

    Article  PubMed  Google Scholar 

  15. Sermon A, Hofmann-Fliri L, Zderic I et al (2021) Impact of bone cement augmentation on the fixation strength of TFNA blades and screws. Medicina (Kaunas) 57:899. https://doi.org/10.3390/medicina57090899

    Article  PubMed  Google Scholar 

  16. Sermon A, Zderic I, Khatchadourian R et al (2021) Bone cement augmentation of femoral nail head elements increases their cut-out resistance in poor bone quality- a biomechanical study. J Biomech 118:110301. https://doi.org/10.1016/j.jbiomech.2021.110301

    Article  PubMed  Google Scholar 

  17. Dall’Oca C, Maluta T, Moscolo A, et al (2010) Cement augmentation of intertrochanteric fractures stabilised with intramedullary nailing. Injury 41:1150–1155. https://doi.org/10.1016/j.injury.2010.09.026

    Article  PubMed  Google Scholar 

  18. Kammerlander C, Hem ES, Klopfer T et al (2018) Cement augmentation of the Proximal Femoral Nail Antirotation (PFNA) - a multicentre randomized controlled trial. Injury 49:1436–1444. https://doi.org/10.1016/j.injury.2018.04.022

    Article  PubMed  Google Scholar 

  19. Dayan R, Morvan A, Cohen-Bittan J et al (2017) Étude comparative entre clou PFNA cimenté et clou gamma III dans les fractures per-trochantériennes du sujet âgé. Revue de Chirurgie Orthopédique et Traumatologique 103:S110. https://doi.org/10.1016/j.rcot.2017.09.204

    Article  Google Scholar 

  20. Yee DKH, Lau W, Tiu KL et al (2020) Cementation: for better or worse? Interim results of a multi-centre cohort study using a fenestrated spiral blade cephalomedullary device for pertrochanteric fractures in the elderly. Arch Orthop Trauma Surg 140:1957–1964. https://doi.org/10.1007/s00402-020-03449-9

    Article  PubMed  Google Scholar 

  21. Fernandez M, David Y, Dubrana F, Di Francia R (2022) Use of a Trochanteric Fixation Nail-Advanced (TFNA) with cement augmentation for treatment of trochanteric fractures in patients greater than sixty five years of age. Int Orthop 46:645–651. https://doi.org/10.1007/s00264-021-05282-0

    Article  PubMed  Google Scholar 

  22. Golicki D, Niewada M, Buczek J et al (2015) Validity of EQ-5D-5L in stroke. Qual Life Res 24:845–850. https://doi.org/10.1007/s11136-014-0834-1

    Article  PubMed  Google Scholar 

  23. Parker MJ, Palmer CR (1993) A new mobility score for predicting mortality after hip fracture. J Bone Joint Surg Br 75:797–798. https://doi.org/10.1302/0301-620X.75B5.8376443

    Article  CAS  PubMed  Google Scholar 

  24. Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am 51:737–755

    Article  CAS  PubMed  Google Scholar 

  25. Carlsson AM (1983) Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain 16:87–101. https://doi.org/10.1016/0304-3959(83)90088-X

    Article  PubMed  Google Scholar 

  26. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 77:1058–1064. https://doi.org/10.2106/00004623-199507000-00012

    Article  CAS  PubMed  Google Scholar 

  27. Hsueh K-K, Fang C-K, Chen C-M et al (2010) Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 34:1273–1276. https://doi.org/10.1007/s00264-009-0866-2

    Article  PubMed  Google Scholar 

  28. Cleveland M, Bosworth DM, Thompson FR, Wilson HJ Jr, Ishizuka T (1959) A ten-year analysis of intertrochanteric fractures of the femur. J Bone Joint Surg Am 41-A:1399–1408

  29. Simmermacher RKJ, Ljungqvist J, Bail H et al (2008) The new proximal femoral nail antirotation (PFNA) in daily practice: results of a multicentre clinical study. Injury 39:932–939. https://doi.org/10.1016/j.injury.2008.02.005

    Article  CAS  PubMed  Google Scholar 

  30. Mitsuzawa S, Matsuda S (2022) Cement distribution and initial fixability of trochanteric fixation nail advanced (TFNA) helical blades. Injury 53:1184–1189. https://doi.org/10.1016/j.injury.2021.10.028

    Article  PubMed  Google Scholar 

  31. Liu M, Yang Z, Pei F et al (2010) A meta-analysis of the Gamma nail and dynamic hip screw in treating peritrochanteric fractures. Int Orthop 34:323–328. https://doi.org/10.1007/s00264-009-0783-4

    Article  PubMed  Google Scholar 

  32. Stern R, Lübbeke A, Suva D et al (2011) Prospective randomised study comparing screw versus helical blade in the treatment of low-energy trochanteric fractures. Int Orthop 35:1855–1861. https://doi.org/10.1007/s00264-011-1232-8

    Article  PubMed  PubMed Central  Google Scholar 

  33. Takigami I, Matsumoto K, Ohara A et al (2008) Treatment of trochanteric fractures with the PFNA (proximal femoral nail antirotation) nail system - report of early results. Bull NYU Hosp Jt Dis 66:276–279

    PubMed  Google Scholar 

  34. Lee Y-K, Kim JT, Alkitaini AA et al (2017) Conversion hip arthroplasty in failed fixation of intertrochanteric fracture: a propensity score matching study. J Arthroplasty 32:1593–1598. https://doi.org/10.1016/j.arth.2016.12.018

    Article  PubMed  Google Scholar 

  35. Kammerlander C, Gebhard F, Meier C et al (2011) Standardised cement augmentation of the PFNA using a perforated blade: a new technique and preliminary clinical results. A prospective multicentre trial Injury 42:1484–1490. https://doi.org/10.1016/j.injury.2011.07.010

    Article  CAS  PubMed  Google Scholar 

  36. Kammerlander C, Doshi H, Gebhard F et al (2014) Long-term results of the augmented PFNA: a prospective multicenter trial. Arch Orthop Trauma Surg 134:343–349. https://doi.org/10.1007/s00402-013-1902-7

    Article  CAS  PubMed  Google Scholar 

  37. Mattsson P, Alberts A, Dahlberg G et al (2005) Resorbable cement for the augmentation of internally-fixed unstable trochanteric fractures. A prospective, randomised multicentre study. J Bone Joint Surg Br 87:1203–1209. https://doi.org/10.1302/0301-620X.87B9.15792

    Article  CAS  PubMed  Google Scholar 

  38. Turgut A, Kalenderer Ö, Karapınar L et al (2016) Which factor is most important for occurrence of cutout complications in patients treated with proximal femoral nail antirotation? Retrospective analysis of 298 patients. Arch Orthop Trauma Surg 136:623–630. https://doi.org/10.1007/s00402-016-2410-3

    Article  PubMed  Google Scholar 

  39. Flores SA, Woolridge A, Caroom C, Jenkins M (2016) The utility of the tip-apex distance in predicting axial migration and cutout with the Trochanteric Fixation Nail System helical blade. J Orthop Trauma 30:e207-211. https://doi.org/10.1097/BOT.0000000000000505

    Article  PubMed  Google Scholar 

  40. Andruszkow H, Frink M, Frömke C et al (2012) Tip apex distance, hip screw placement, and neck shaft angle as potential risk factors for cut-out failure of hip screws after surgical treatment of intertrochanteric fractures. Int Orthop 36:2347–2354. https://doi.org/10.1007/s00264-012-1636-0

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stern LC, Gorczyca JT, Kates S et al (2017) Radiographic review of helical blade versus lag screw fixation for cephalomedullary nailing of low-energy peritrochanteric femur fractures: there is a difference in cutout. J Orthop Trauma 31:305–310. https://doi.org/10.1097/BOT.0000000000000853

    Article  PubMed  Google Scholar 

  42. Ibrahim I, Appleton PT, Wixted JJ et al (2019) Implant cut-out following cephalomedullary nailing of intertrochanteric femur fractures: are helical blades to blame? Injury 50:926–930. https://doi.org/10.1016/j.injury.2019.02.015

    Article  PubMed  Google Scholar 

  43. Parker MJ (1992) Cutting-out of the dynamic hip screw related to its position. J Bone Joint Surg Br 74:625. https://doi.org/10.1302/0301-620X.74B4.1624529

    Article  CAS  PubMed  Google Scholar 

  44. Galanopoulos IP, Mavrogenis AF, Megaloikonomos PD et al (2018) Similar function and complications for patients with short versus long hip nailing for unstable pertrochanteric fractures. SICOT J 4:23. https://doi.org/10.1051/sicotj/2018023

    Article  PubMed  PubMed Central  Google Scholar 

  45. Prestmo A, Saltvedt I, Helbostad JL et al (2016) Who benefits from orthogeriatric treatment? Results from the Trondheim hip-fracture trial - PubMed. https://pubmed.ncbi.nlm.nih.gov/26895846/. Accessed 2 Aug 2022

  46. Wähnert D, Hofmann-Fliri L, Richards RG et al (2014) Implant augmentation: adding bone cement to improve the treatment of osteoporotic distal femur fractures: a biomechanical study using human cadaver bones. Medicine (Baltimore) 93:e166. https://doi.org/10.1097/MD.0000000000000166

    Article  CAS  PubMed  Google Scholar 

  47. Wu K, Xu Y, Zhang L et al (2020) Which implant is better for beginners to learn to treat geriatric intertrochanteric femur fractures: a randomised controlled trial of surgeons, metalwork, and patients. J Orthop Translat 21:18–23. https://doi.org/10.1016/j.jot.2019.11.003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by MF and YD. The first draft of the manuscript was written by MF, and all authors commented on previous versions of the manuscript. Statistical analyses were performed by VMDB and HL. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rémi Di Francia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The study was approved by the local ethics committee (B2023CE.11). Reference 29BRC23.0035.

Consent to participate

Informed consent to participate in the study has been obtained from participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was conducted at the Brest University Hospital, Centre Hospitalier Régional Universitaire de Brest, Boulevard Tanguy Prigent, 29200 Brest, France.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, M., Du Bourg, V.M., David, Y. et al. Augmented versus non-augmented Trochanteric Fixation Nail-Advanced (TFNA) nails for treating trochanteric fractures in patients over sixty-five years of age. International Orthopaedics (SICOT) 48, 831–840 (2024). https://doi.org/10.1007/s00264-023-06073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-023-06073-5

Keywords

Navigation