Log in

Residual lateral wall width predicts a high risk of mechanical complications in cephalomedullary nail fixation of intertrochanteric fractures: a retrospective cohort study with propensity score matching

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to determine whether the integrity of the entry portal of head-neck implant is related to postoperative mechanical complications.

Methods

We retrospectively reviewed consecutive patients with pertrochanteric fractures in our hospital treated from January 1, 2018, to September 1, 2021. Based on the integrity of the entry portal for head-neck implants on the femoral lateral wall, patients were divided into two groups, including the ruptured entry portal (REP) group and the intact entry portal (IEP) group. After 4:1 propensity score-matched analyses were used to balance the baseline of the two groups, a total of 55 patients were extracted from the original participants, including 11 patients in the REP group and 44 matched patients in the IEP group. The anterior to posterior cortex width on the mid-level of the lesser trochanter was measured and defined as the residual lateral wall width (RLWW).

Results

Compared with the IEP group, the REP group was correlated with postoperative mechanical complications (OR = 12.00, 95% CI 1.837–78.369, P = 0.002) and hip-thigh pain (OR = 26.67, 95% CI 4.98–142.86). RLWW ≤ 18.55 mm indicated a high likelihood (tau-y = 0.583, P = 0.000) of becoming the REP type postoperatively and being more likely to suffer from mechanical complications (OR = 30.67, 95% CI 3.91–240.70, P = 0.000) and hip-thigh pain (OR = 14.64, 95% CI 2.36–90.85, P = 0.001).

Conclusion

Rupture of entry portal is a high-risk factor for mechanical complications in intertrochanteric fractures. RLWW ≤ 18.55 mm is a reliable predictor of the postoperative REP type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Investigators HA (2020) Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial. Lancet 395(10225):698–708. https://doi.org/10.1016/S0140-6736(20)30058-1

    Article  Google Scholar 

  2. Crandall CJ, Hunt RP, LaCroix AZ et al (2021) After the initial fracture in postmenopausal women, where do subsequent fractures occur? EClin Med 35:100826. https://doi.org/10.1016/j.eclinm.2021.100826

    Article  Google Scholar 

  3. Nherera L, Trueman P, Horner A et al (2018) Comparison of a twin interlocking derotation and compression screw cephalomedullary nail (InterTAN) with a single screw derotation cephalomedullary nail (proximal femoral nail antirotation): a systematic review and meta-analysis for intertrochanteric fractures. J Orthop Surg Res 13(1):46. https://doi.org/10.1186/s13018-018-0749-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. Law GW, Wong YR, Yew AK et al (2019) Medial migration in cephalomedullary nail fixation of pertrochanteric hip fractures: a biomechanical analysis using a novel bidirectional cyclic loading model. Bone Joint Res 8(7):313–322. https://doi.org/10.1302/2046-3758.87.BJR-2018-0271.R1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mingke Z, Chen Y, Qian J et al (2022) Treatment of coronal plane femoral intertrochanteric fractures with a microexternal fixator combined with proximal femoral nail antirotation. J Healthc Eng 2022:1735603. https://doi.org/10.1155/2022/1735603

    Article  Google Scholar 

  6. Cho JW, Kent WT, Yoon YC et al (2017) Fracture morphology of AO/OTA 31-A trochanteric fractures: a 3D CT study with an emphasis on coronal fragments. Inj 48(2):277–284. https://doi.org/10.1016/j.injury.2016.12.015

    Article  Google Scholar 

  7. Li M, Li ZR, Li JT et al (2019) Three-dimensional map** of intertrochanteric fracture lines. Chin Med J 132(21):2524–2533. https://doi.org/10.1097/CM9.0000000000000446

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li C, Zhao D, Xu X et al (2020) Three-dimensional computed tomography (CT) map** of intertrochanteric fractures in elderly patients. Med Sci Monit 26:e925452. https://doi.org/10.12659/MSM.925452

    Article  PubMed  PubMed Central  Google Scholar 

  9. Baumgaertner MR, Curtin SL, Lindskog DM et al (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 77(7):1058–1064. https://doi.org/10.2106/00004623-199507000-00012

    Article  CAS  PubMed  Google Scholar 

  10. Chang SM, Zhang YQ, Ma Z et al (2015) Fracture reduction with positive medial cortical support: a key element in stability reconstruction for the unstable pertrochanteric hip fractures. Arch Orthop Trauma Surg 135(6):811–818. https://doi.org/10.1007/s00402-015-2206-x

    Article  PubMed  PubMed Central  Google Scholar 

  11. Singh M, Riggs BL, Beabout JW et al (1973) Femoral trabecular pattern index for evaluation of spinal osteoporosis. A detailed methodologic description. Mayo Clin Proc 48(3):184–9

    CAS  PubMed  Google Scholar 

  12. Meinberg EG, Agel J, Roberts CS et al (2018) Fracture and dislocation classification compendium-2018. J Orthop Trauma 32(Suppl 1):S1–S170. https://doi.org/10.1097/BOT.0000000000001063

    Article  PubMed  Google Scholar 

  13. Zuckerman JD, Koval KJ, Aharonoff GB et al (2000) A functional recovery score for elderly hip fracture patients: I. Dev J Orthop Trauma 14(1):20–25. https://doi.org/10.1097/00005131-200001000-00005

    Article  CAS  Google Scholar 

  14. Parker MJ, Palmer CR (1993) A new mobility score for predicting mortality after hip fracture. J Bone Joint Surg Br 75(5):797–798. https://doi.org/10.1302/0301-620X.75B5.8376443

    Article  CAS  PubMed  Google Scholar 

  15. Tsukada S, Okumura G, Matsueda M (2012) Postoperative stability on lateral radiographs in the surgical treatment of pertrochanteric hip fractures. Arch Orthop Trauma Surg 132(6):839–846. https://doi.org/10.1007/s00402-012-1484-9

    Article  PubMed  Google Scholar 

  16. Mao W, Ni H, Li L et al (2019) Comparison of Baumgaertner and Chang reduction quality criteria for the assessment of trochanteric fractures. Bone Joint Res 8(10):502–508. https://doi.org/10.1302/2046-3758.810.BJR-2019-0032.R1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kozono N, Ikemura S, Yamashita A et al (2014) Direct reduction may need to be considered to avoid postoperative subtype P in patients with an unstable trochanteric fracture: a retrospective study using a multivariate analysis. Arch Orthop Trauma Surg 134(12):1649–1654. https://doi.org/10.1007/s00402-014-2089-2

    Article  PubMed  Google Scholar 

  18. Tufescu T, Sharkey B (2013) The lateral radiograph is useful in predicting shortening in 31A2 pertrochanteric hip fractures. Can J Surg 56(4):270–274. https://doi.org/10.1503/cjs.007412

    Article  PubMed  PubMed Central  Google Scholar 

  19. Takigawa N, Moriuchi H, Abe M et al (2014) Complications and fixation techniques of trochanteric fractures with the TARGON((R)) PF. Inj 45(Suppl 1):S44–S48. https://doi.org/10.1016/j.injury.2013.10.036

    Article  Google Scholar 

  20. Yamamoto N, Imaizumi T, Noda T et al (2022) Postoperative computed tomography assessment of anteromedial cortex reduction is a predictor for reoperation after intramedullary nail fixation for pertrochanteric fractures. Eur J Trauma Emerg Surg 48(2):1437–1444. https://doi.org/10.1007/s00068-021-01718-9

    Article  PubMed  Google Scholar 

  21. Tan BY, Lau AC, Kwek EB (2015) Morphology and fixation pitfalls of a highly unstable intertrochanteric fracture variant. J Orthop Surg 23(2):142–145. https://doi.org/10.1177/230949901502300204

    Article  Google Scholar 

  22. Huang C, Wu X (2021) Surgical selection of unstable intertrochanteric fractures: PFNA combined with or without cerclage cable. Biomed Res Int 2021:8875370. https://doi.org/10.1155/2021/8875370

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ceynowa M, Zerdzicki K, Klosowski P et al (2021) Cerclage cable augmentation does not increase stability of the fixation of intertrochanteric fractures. A biomechanical study. Orthop Traumatol Surg Res 107(6):103003. https://doi.org/10.1016/j.otsr.2021.103003

    Article  PubMed  Google Scholar 

  24. Karayiannis P, James A (2020) The impact of cerclage cabling on unstable intertrochanteric and subtrochanteric femoral fractures: a retrospective review of 465 patients. Eur J Trauma Emerg Surg 46(5):969–975. https://doi.org/10.1007/s00068-018-01071-4

    Article  PubMed  Google Scholar 

  25. Joshi D, Dhamangaonkar AC, Ramawat S et al (2015) Predictors of iatrogenic lateral wall fractures while treating intertrochanteric fracture femur with the dynamic hip screw system in Indian patients. Eur J Orthop Surg Traumatol 25(4):677–682. https://doi.org/10.1007/s00590-014-1566-1

    Article  PubMed  Google Scholar 

  26. Rehme J, Woltmann A, Brand A et al (2021) Does auxiliary cerclage wiring provide intrinsic stability in cephalomedullary nailing of trochanteric and subtrochanteric fractures? Int Orthop 45(5):1329–1336. https://doi.org/10.1007/s00264-020-04795-4

    Article  PubMed  Google Scholar 

  27. Zhang Y, Sun Y, Liao S et al (2020) Three-dimensional map** of medial wall in unstable pertrochanteric fractures. Biomed Res Int 2020:8428407. https://doi.org/10.1155/2020/8428407

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chang SM, Wang ZH, Tian KW et al (2022) A sophisticated fracture classification system of the proximal femur trochanteric region (AO/OTA-31A) based on 3D-CT images. Front Surg. 9:919225. https://doi.org/10.3389/fsurg.2022.919225

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the National Natural Science Foundation of China (NSFC, No. 81772323) and Natural Science Foundation of Shanghai (No. 23ZR14593000).

Author information

Authors and Affiliations

Authors

Contributions

SJL and SMC performed most of the investigation and data analysis and wrote the manuscript; SMC, SJH, HL, and SCD contributed to the interpretation of the data and analyses. All of the authors have read and approved the manuscript.

Corresponding authors

Correspondence to Shi-Min Chang or Shou-Chao Du.

Ethics declarations

Ethics approval and consent to participate

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Yangpu Hospital (No. 2017ZRKX-013). Written informed consent was obtained from all patients.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 295 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SJ., Chang, SM., Liu, H. et al. Residual lateral wall width predicts a high risk of mechanical complications in cephalomedullary nail fixation of intertrochanteric fractures: a retrospective cohort study with propensity score matching. International Orthopaedics (SICOT) 47, 1827–1836 (2023). https://doi.org/10.1007/s00264-023-05780-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-023-05780-3

Keywords

Navigation