Log in

PD-L1 antibody enhanced β-glucan antitumor effects via blockade of the immune checkpoints in a melanoma model

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

In the tumor microenvironment (TME), one of the major functions of tumor-recruited CD11b+ cells are the suppression of the T-cell-mediated anti-tumor immune response. β-glucan could convert the phenotype of tumor-recruited CD11b+ cells from the suppressive to the promotive, and enhanced their anti-tumor effects. However, β-glucan could enhance the PD-1/PD-L1 expression on CD11b+ cells, while PD-1 could inhibit macrophage phagocytosis and PD-L1 could induce a co-inhibitory signal in T-cells and lead to T-cell apoptosis and anergy. These protumor effects may be reversed by PD-1/PD-L1 block therapy. In the present study, we focused on the efficacy of β-glucan anti-tumor therapy combined with anti-PD-L1 mAb treatment, and the mechanism of their synergistic effects could be fully verified. We verified the effect of β-glucan (i.e., inflammatory cytokine secretion of TNF-α, IL-12, IL-6, IL-1β and the expression of immune checkpoint PD-1/PD-L1) in naïve mouse peritoneal exudate CD11b+ cells. In our mouse melanoma model, treatment with a PD-L1 blocking antibody with β-glucan synergized tumor regression. After treatment with β-glucan and anti-PD-L1 mAb antibody, tumor infiltrating leukocyte (TILs) not only showed a competent T-cell function (CD107a, perforin, IL-2, IFN-γ and Ki67) and CTL population, but also showed enhanced tumor-recruited CD11b+ cell activity (IL-12, IL-6, IL-1β and PD-1). This effect was also verified in the peritoneal exudate CD11b+ cells of tumor-bearing mice. PD-1/PD-L1 blockade therapy enhanced the β-glucan antitumor effects via the blockade of tumor-recruited CD11b+ cell immune checkpoints in the melanoma model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AP-BG:

Aureobasidium pullulans-Produced β-glucan

CTLs:

Cytotoxic T-cells

MDSC:

Myeloid-derived suppressor cells

MFI:

Mean fluorescence intensity

PECs:

Peritoneal exudate cells

PMA:

Phorbol 12-myristate 13-acetate

TADC:

Tumor-associated DCs

TAM:

Tumor-associated macrophages

TGI:

Tumor growth inhibition

TIL:

Tumor-infiltrating leukocytes

TIM:

Tumor-infiltrating myeloid cells

TME:

Tumor microenvironment

References

  1. Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121(10):4015–4029. https://doi.org/10.1172/JCI45862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schar** NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC, Ferris RL, Delgoffe GM (2016) The Tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45(2):374–388. https://doi.org/10.1016/j.immuni.2016.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Park JA, Wang L, Cheung NV (2001) Modulating tumor infiltrating myeloid cells to enhance bispecific antibody-driven T cell infiltration and anti-tumor response. J Hematol Oncol 14(1):142. https://doi.org/10.1186/s13045-021-01156-5

    Article  CAS  Google Scholar 

  4. Uehara T, Eikawa S, Nishida M, Kunisada Y, Yoshida A, Fujiwara T, Kunisada T, Ozaki T, Udono H (2019) Metformin induces CD11b+-cell-mediated growth inhibition of an osteosarcoma: implications for metabolic reprogramming of myeloid cells and anti-tumor effects. Int Immunol 31(4):187–198. https://doi.org/10.1093/intimm/dxy079

    Article  CAS  PubMed  Google Scholar 

  5. Kalafati L, Kourtzelis I, Schulte-Schrep** J, Li X, Hatzioannou A, Grinenko T, Hagag E, Sinha A, Has C, Dietz S et al (2020) Innate immune training of granulopoiesis promotes anti-tumor activity. Cell 183(3):771-785 e12. https://doi.org/10.1016/j.cell.2020.09.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL, Johnson M, Lusis AJ, Cohen DA, Iruela-Arispe ML et al (2010) Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 115(7):1461–1471. https://doi.org/10.1182/blood-2009-08-237412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chan GC, Chan WK, Sze DM (2009) The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol 2:25. https://doi.org/10.1186/1756-8722-2-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vetvicka V, Vannucci L, Sima P, Richter J (2019) Beta Glucan: Supplement or Drug? From laboratory to clinical trials. Molecules 24(7):1251. https://doi.org/10.3390/molecules24071251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murphy EJ, Rezoagli E, Major I, Rowan NJ, Laffey JG (2020) Beta-glucan metabolic and immunomodulatory properties and potential for clinical application. J Fungi (Basel) 6(4):356. https://doi.org/10.3390/jof6040356

    Article  CAS  PubMed  Google Scholar 

  10. Daley D, Mani VR, Mohan N, Akkad N, Ochi A, Heindel DW, Lee KB, Zambirinis CP, Pandian GSB, Savadkar S et al (2017) Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med 23(5):556–567. https://doi.org/10.1038/nm.4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moriya N, Moriya Y, Nomura H, Kusano K, Asada Y, Uchiyama H, Park EY, Okabe M (2014) Improved β-glucan yield using an Aureobasidium pullulans M-2 mutant strain in a 200-L pilot scale fermentor targeting industrial mass production. Biotechnol Bioprocess Eng 18(6):1083–1089

    Article  Google Scholar 

  12. Muramatsu D, Iwai A, Aoki S, Uchiyama H, Kawata K, Nakayama Y, Nikawa Y, Kusano K, Okabe M, Miyazaki T (2012) beta-Glucan derived from Aureobasidium pullulans is effective for the prevention of influenza in mice. PLoS ONE 7(7):e41399. https://doi.org/10.1371/journal.pone.0041399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shui Y, Hu X, Hirano H, Kusano K, Tsukamoto H, Li M, Hasumi K, Guo WZ, Li XK (2021) Beta-glucan from Aureobasidium pullulans augments the anti-tumor immune responses through activated tumor-associated dendritic cells. Int Immunopharmacol 101(Pt A):108265. https://doi.org/10.1016/j.intimp.2021.108265

    Article  CAS  PubMed  Google Scholar 

  14. Geller A, Shrestha R, Yan J (2019) Yeast-derived beta-glucan in cancer: novel uses of a traditional therapeutic. Int J Mol Sci 20(15):3618. https://doi.org/10.3390/ijms20153618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining WN, Freeman GJ, Sharpe AH (2017) PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med 214(4):895–904. https://doi.org/10.1084/jem.20160801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207(10):2187–2194. https://doi.org/10.1084/jem.20100643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peng Q, Qiu X, Zhang Z, Zhang S, Zhang Y, Liang Y, Guo J, Peng H, Chen M, Fu YX et al (2020) PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat Commun 11(1):4835. https://doi.org/10.1038/s41467-020-18570-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shan T, Chen S, Chen X, Wu T, Yang Y, Li S, Ma J, Zhao J, Lin W, Li W et al (2020) M2TAM subsets altered by lactic acid promote Tcell apoptosis through the PDL1/PD1 pathway. Oncol Rep 44(5):1885–1894. https://doi.org/10.3892/or.2020.7767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D et al (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545(7655):495–499. https://doi.org/10.1038/nature22396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wei Y, Zhao Q, Gao Z, Lao XM, Lin WM, Chen DP, Mu M, Huang CX, Liu ZY, Li B et al (2019) The local immune landscape determines tumor PD-L1 heterogeneity and sensitivity to therapy. J Clin Invest 129(8):3347–3360. https://doi.org/10.1172/JCI127726

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang B, Wang Z, Wu L, Zhang M, Li W, Ding J, Zhu J, Wei H, Zhao K (2013) Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS ONE 8(2):e57114. https://doi.org/10.1371/journal.pone.0057114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu Z, Zhang H, Chen B, Liu X, Zhang S, Zong Z, Gao M (2020) PD-L1-mediated immunosuppression in glioblastoma is Associated with the infiltration and M2-polarization of tumor-associated macrophages. Front Immunol 11:588552. https://doi.org/10.3389/fimmu.2020.588552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsukihara H, Nakagawa F, Sakamoto K, Ishida K, Tanaka N, Okabe H, Uchida J, Matsuo K, Takechi T (2015) Efficacy of combination chemotherapy using a novel oral chemotherapeutic agent, TAS-102, together with bevacizumab, cetuximab, or panitumumab on human colorectal cancer xenografts. Oncol Rep 33(5):2135–2142. https://doi.org/10.3892/or.2015.3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Z-j JIN (2004) About the evaluationof drug combination. Acta Pharmacol Sin 25(2):146–147

    Google Scholar 

  25. Wang K, Liu X, Liu Q, Ho IH, Wei X, Yin T, Zhan Y, Zhang W, Zhang W, Chen B et al (2020) Hederagenin potentiated cisplatin- and paclitaxel-mediated cytotoxicity by impairing autophagy in lung cancer cells. Cell Death Dis 11(8):611. https://doi.org/10.1038/s41419-020-02880-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shen N, Yang C, Zhang X, Tang Z, Chen X (2021) Cisplatin nanoparticles possess stronger anti-tumor synergy with PD1/PD-L1 inhibitors than the parental drug. Acta Biomater 135:543–555. https://doi.org/10.1016/j.actbio.2021.08.013

    Article  CAS  PubMed  Google Scholar 

  27. Charan J, Kantharia ND (2013) How to calculate sample size in animal studies? J Pharmacol Pharmacother 4(4):303–306. https://doi.org/10.4103/0976-500X.119726

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kang H (2021) Sample size determination and power analysis using the G*Power software. J Educ Eval Health Prof 18:17. https://doi.org/10.3352/jeehp.2021.18.17

    Article  PubMed  PubMed Central  Google Scholar 

  29. Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social. Behav Biomed Sci 39(2):175–191

    Google Scholar 

  30. Vetvicka V, Thornton BP, Ross GD (1996) Soluble beta-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J Clin Invest 98(1):50–61. https://doi.org/10.1172/JCI118777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chitirala P, Chang HF, Martzloff P, Harenberg C, Ravichandran K, Abdulreda MH, Berggren PO, Krause E, Schirra C, Leinders-Zufall T, Benseler F, Brose N, Rettig J (2020) Studying the biology of cytotoxic T lymphocytes in vivo with a fluorescent granzyme B-mTFP knock-in mouse. Elife 9:e58065. https://doi.org/10.7554/eLife.58065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Packard BZ, Telford WG, Komoriya A, Henkart PA (2007) Granzyme B activity in target cells detects attack by cytotoxic lymphocytes. J Immunol 179(6):3812–3820. https://doi.org/10.4049/jimmunol.179.6.3812

    Article  CAS  PubMed  Google Scholar 

  33. Wattrang E, Dalgaard TS, Norup LR, Kjaerup RB, Lunden A, Juul-Madsen HR (2015) CD107a as a marker of activation in chicken cytotoxic T cells. J Immunol Methods 419:35–47. https://doi.org/10.1016/j.jim.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  34. Anikeeva N, Panteleev S, Mazzanti NW, Terai M, Sato T, Sykulev Y (2021) Efficient killing of tumor cells by CAR-T cells requires greater number of engaged CARs than TCRs. J Biol Chem 297(3):101033. https://doi.org/10.1016/j.jbc.2021.101033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Frank B, Wei Y-L, Kim K-H, Guerrero A, Lebrec H, Balazs M, Wang X (2018) Development of a BiTE®-mediated CD8+ cytotoxic T-lymphocyte activity assay to assess immunomodulatory potential of drug candidates in Cynomolgus macaque. J Immunotoxicol 15(1):119–125. https://doi.org/10.1080/1547691X.2018.1486342

    Article  CAS  PubMed  Google Scholar 

  36. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180(5):3132–3139. https://doi.org/10.4049/jimmunol.180.5.3132

    Article  CAS  PubMed  Google Scholar 

  37. Jiang T, Zhou C, Ren S (2016) Role of IL-2 in cancer immunotherapy. Oncoimmunology 5(6):e1163462. https://doi.org/10.1080/2162402X.2016.1163462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gettinger SN, Choi J, Mani N, Sanmamed MF, Datar I, Sowell R, Du VY, Kaftan E, Goldberg S, Dong W et al (2018) A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers. Nat Commun 9(1):3196. https://doi.org/10.1038/s41467-018-05032-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soares A, Govender L, Hughes J, Mavakla W, de Kock M, Barnard C, Pienaar B, Janse van Rensburg E, Jacobs G, Khomba G et al (2010) Novel application of Ki67 to quantify antigen-specific in vitro lymphoproliferation. J Immunol Methods 362(1–2):43–50. https://doi.org/10.1016/j.jim.2010.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matsushita H, Hosoi A, Ueha S, Abe J, Fujieda N, Tomura M, Maekawa R, Matsushima K, Ohara O, Kakimi K (2015) Cytotoxic T lymphocytes block tumor growth both by lytic activity and IFNgamma-dependent cell-cycle arrest. Cancer Immunol Res 3(1):26–36. https://doi.org/10.1158/2326-6066.CIR-14-0098

    Article  CAS  PubMed  Google Scholar 

  41. Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H (2015) Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci U S A 112(6):1809–1814. https://doi.org/10.1073/pnas.1417636112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Awad RM, De Vlaeminck Y, Maebe J, Goyvaerts C, Breckpot K (2018) Turn back the TIMe: targeting tumor infiltrating myeloid cells to revert cancer progression. Front Immunol 9:1977. https://doi.org/10.3389/fimmu.2018.01977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, Luque-Martin R, Chen HJ, Boshuizen MC, Ahmed M et al (2016) Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep 17(3):684–696. https://doi.org/10.1038/nnano.2016.168

    Article  CAS  PubMed  Google Scholar 

  44. Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, Pajarinen JS, Nejadnik H, Goodman S, Moseley M et al (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11(11):986–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim J, Bae JS (2016) Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm 2016:6058147. https://doi.org/10.1155/2016/6058147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Di Mitri D, Toso A, Alimonti A (2015) Tumor-infiltrating myeloid cells drive senescence evasion and chemoresistance in tumors. Oncoimmunology 4(9):e988473. https://doi.org/10.4161/2162402X.2014.988473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Holmgaard RB, Zamarin D, Lesokhin A, Merghoub T, Wolchok JD (2016) Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors. EBioMedicine 6:50–58

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xu J, Escamilla J, Mok S, David J, Priceman S, West B, Bollag G, McBride W, Wu L (2013) CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res 73(9):2782–2794. https://doi.org/10.1158/0008-5472.CAN-12-3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ahn GO, Tseng D, Liao CH, Dorie MJ, Czechowicz A, Brown JM (2010) Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci U S A 107(18):8363–8368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cao Q, Huang Q, Wang YA, Li C (2021) Abraxane-induced bone marrow CD11b(+) myeloid cell depletion in tumor-bearing mice is visualized by muPET-CT with (64)Cu-labeled anti-CD11b and prevented by anti-CSF-1. Theranostics 11(7):3527–3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. de Graaff P, Govers C, Wichers HJ, Debets R (2018) Consumption of beta-glucans to spice up T cell treatment of tumors: a review. Expert Opin Biol Ther 18(10):1023–1040. https://doi.org/10.1080/14712598.2018.1523392

    Article  CAS  PubMed  Google Scholar 

  52. Kawata K, Iwai A, Muramatsu D, Aoki S, Uchiyama H, Okabe M, Hayakawa S, Takaoka A, Miyazaki T (2015) Stimulation of macrophages with the beta-glucan produced by aureobasidium pullulans promotes the secretion of tumor necrosis factor-related apoptosis inducing ligand (TRAIL). PLoS ONE 10(4):e0124809. https://doi.org/10.1371/journal.pone.0124809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Suzuki T, Kusano K, Kondo N, Nishikawa K, Kuge T, Ohno N (2021) Biological activity of high-purity β-1,3–1,6-Glucan derived from the black yeast aureobasidium pullulans: a literature review. Nutrients. https://doi.org/10.3390/nu13010242

    Article  PubMed  PubMed Central  Google Scholar 

  54. Driscoll M, Hansen R, Ding C, Cramer DE, Yan J (2009) Therapeutic potential of various beta-glucan sources in conjunction with anti-tumor monoclonal antibody in cancer therapy. Cancer Biol Ther 8(3):218–225. https://doi.org/10.4161/cbt.8.3.7337

    Article  CAS  PubMed  Google Scholar 

  55. Kornete M, Sgouroudis E, Piccirillo CA (2012) ICOS-dependent homeostasis and function of Foxp3+ regulatory T cells in islets of nonobese diabetic mice. J Immunol 188(3):1064–1074. https://doi.org/10.4049/jimmunol.1101303

    Article  CAS  PubMed  Google Scholar 

  56. Chen D, Liu X, Yang Y, Yang H, Lu P (2015) Systematic synergy modeling: understanding drug synergy from a systems biology perspective. BMC Syst Biol 9:56. https://doi.org/10.1186/s12918-015-0202-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Duarte D, Vale N (2022) Evaluation of synergism in drug combinations and reference models for future orientations in oncology. Curr Res Pharmacol Drug Discov 3:100110. https://doi.org/10.1016/j.crphar.2022.100110

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446. https://doi.org/10.1158/0008-5472.CAN-09-1947

    Article  CAS  PubMed  Google Scholar 

  59. Lederer S, Dijkstra TMH, Heskes T (2018) Additive dose response models: explicit formulation and the loewe additivity consistency condition. Front Pharmacol 9:31. https://doi.org/10.3389/fphar.2018.00031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu Q, Yin X, Languino LR, Altieri DC (2018) Evaluation of drug combination effect using a Bliss independence dose-response surface model. Stat Biopharm Res 10(2):112–122. https://doi.org/10.1080/19466315.2018.1437071

    Article  PubMed  PubMed Central  Google Scholar 

  61. Grosskopf AK, Correa S, Baillet J, Maikawa CL, Gale EC, Brown RA, Appel EA (2021) Consistent tumorigenesis with self-assembled hydrogels enables high-powered murine cancer studies. Commun Biol 4(1):985. https://doi.org/10.1038/s42003-021-02500-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fridman R, Benton G, Aranoutova I, Kleinman HK, Bonfil RD (2012) Increased initiation and growth of tumor cell lines, cancer stem cells and biopsy material in mice using basement membrane matrix protein (Cultrex or Matrigel) co-injection. Nat Protoc 7(6):1138–1144. https://doi.org/10.1038/nprot.2012.053

    Article  CAS  PubMed  Google Scholar 

  63. Fowlkes N, Clemons K, Rider PJ, Subramanian R, Wakamatsu N, Langohr I, Kousoulas KG (2019) Factors affecting growth kinetics and spontaneous metastasis in the B16F10 syngeneic murine melanoma model. Comp Med 69(1):48–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen S, Lee LF, Fisher TS, Jessen B, Elliott M, Evering W, Logronio K, Tu GH, Tsaparikos K, Li X et al (2015) Combination of 4–1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res 3(2):149–160. https://doi.org/10.1158/2326-6066.CIR-14-0118

    Article  CAS  PubMed  Google Scholar 

  65. Grinshtein N, Ventresca M, Margl R, Bernard D, Yang TC, Millar JB, Hummel J, Beermann F, Wan Y, Bramson JL (2009) High-dose chemotherapy augments the efficacy of recombinant adenovirus vaccines and improves the therapeutic outcome. Cancer Gene Ther 16(4):338–350. https://doi.org/10.1038/cgt.2008.89

    Article  CAS  PubMed  Google Scholar 

  66. Baird JR, Byrne KT, Lizotte PH, Toraya-Brown S, Scarlett UK, Alexander MP, Sheen MR, Fox BA, Bzik DJ, Bosenberg M et al (2013) Immune-mediated regression of established B16F10 melanoma by intratumoral injection of attenuated Toxoplasma gondii protects against rechallenge. J Immunol 190(1):469–478. https://doi.org/10.4049/jimmunol.1201209

    Article  CAS  PubMed  Google Scholar 

  67. Reilley MJ, Morrow B, Ager CR, Liu A, Hong DS, Curran MA (2019) TLR9 activation cooperates with T cell checkpoint blockade to regress poorly immunogenic melanoma. J Immunother Cancer 7(1):323. https://doi.org/10.1186/s40425-019-0811-x

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bally AP, Lu P, Tang Y, Austin JW, Scharer CD, Ahmed R, Boss JM (2015) NF-kappaB regulates PD-1 expression in macrophages. J Immunol 194(9):4545–4554. https://doi.org/10.4049/jimmunol.1402550

    Article  CAS  PubMed  Google Scholar 

  69. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu YX (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124(2):687–695. https://doi.org/10.1172/JCI67313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K et al (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800. https://doi.org/10.1038/nm730

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to thank Ms. Y Sato for her invaluable technical assistance.

Funding

This study was supported by research grants from the Grants of Ministry of Education, Culture, Sports, Science and Technology of Japan (Grants-in-Aid 18K08558, 21K15586, 21K08634); grants from the National Center for Child Health and Development (2021C-40, 29-09).

Author information

Authors and Affiliations

Authors

Contributions

XH, YFS, HH, MF, KK, WZG and XKL and conceived and designed the project; XH and YFS acquired the data; HH, MF, KK, WZG and XKL analyzed and interpreted the data; XH, YFS and XKL wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Masayuki Fu**o or **ao-Kang Li.

Ethics declarations

Conflict of interest

KK is an employee of Aureo Co., Ltd.

Ethics approval

Mice were cared for in accordance with the National Research Institute for Child Health and Development (NCCHD) guidelines (A2017-005-C03) on laboratory animal welfare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 3548 kb)

Supplementary file2 (JPG 1364 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Shui, Y., Hirano, H. et al. PD-L1 antibody enhanced β-glucan antitumor effects via blockade of the immune checkpoints in a melanoma model. Cancer Immunol Immunother 72, 719–731 (2023). https://doi.org/10.1007/s00262-022-03276-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03276-4

Keywords

Navigation