Log in

Tumor infiltrating mast cells determine oncogenic HIF-2α-conferred immune evasion in clear cell renal cell carcinoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

Hypoxia-inducible factor 2α (HIF-2α) overexpression leads to activation of angiogenic pathways. However, little is known about the association between HIF-2α expression and anti-tumor immunity in clear cell renal cell carcinoma (ccRCC). We aimed to explore how HIF-2α influenced the microenvironment and the underlying mechanisms.

Experimental design

We immunohistochemically evaluated immune cells infiltrations and prognostic value of HIF-2α expression in a retrospective Zhongshan Hospital cohort of 280 ccRCC patients. Fresh tumor samples, non-tumor tissues and autologous peripheral blood for RT-PCR, ELISA and flow cytometry analyses were collected from patients who underwent nephrectomy in Zhongshan Hospital from September 2017 to April 2018. The TCGA KIRC cohort and SATO cohort were assessed to support our findings.

Results

We demonstrated that ccRCC patients with HIF-2αhigh tumors exhibited reduced overall survival (p = 0.025) and recurrence-free survival (p < 0.001). Functions of CD8+ T cells were impaired in HIF-2αhigh patients. In ccRCC patients, HIF-2α induced the expression of stem cell factor (SCF), which served as chemoattractant for mast cells. Tumor infiltrating mast cells impaired anti-tumor immunity partly by secreting IL-10 and TGF-β. HIF-2α mRNA level adversely associated with immunostimulatory genes expression in KIRC and SATO cohorts.

Conclusions

HIF-2α contributed to evasion of anti-tumor immunity via SCF secretion and subsequent recruitment of mast cells in ccRCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ccRCC:

Clear cell renal cell carcinoma

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GO:

Gene ontology

GSEA:

Gene set enrichment analyses

HIF:

Hypoxia-inducible factors

KIRC:

Kidney clear cell carcinoma

pVHL:

Von Hippel-Lindau (VHL) protein

RCC:

Renal cell carcinoma

SCF:

Stem cell factor

TCGA:

The Cancer Genome Atlas

TIM:

Tumor infiltrating mast cell

VHL:

Von Hippel-Lindau

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917. https://doi.org/10.1002/ijc.25516

    Article  CAS  PubMed  Google Scholar 

  3. Cohen HT, McGovern FJ (2005) Renal-cell carcinoma. N Engl J Med 353:2477–2490. https://doi.org/10.1056/NEJMra043172

    Article  CAS  PubMed  Google Scholar 

  4. Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C (2008) Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev 34:193–205. https://doi.org/10.1016/j.ctrv.2007.12.001

    Article  PubMed  Google Scholar 

  5. Escudier B (2012) Emerging immunotherapies for renal cell carcinoma. Ann Oncol 23(Suppl 8):viii35–40. https://doi.org/10.1093/annonc/mds261

    Article  PubMed  Google Scholar 

  6. Atkins MB, Regan M, McDermott D (2004) Update on the role of interleukin 2 and other cytokines in the treatment of patients with stage IV renal carcinoma. Clin Cancer Res 10:6342S–6342S6S. https://doi.org/10.1158/1078-0432.CCR-040029

    Article  CAS  PubMed  Google Scholar 

  7. Nyhan MJ, O’Sullivan GC, McKenna SL (2008) Role of the VHL (von Hippel-Lindau) gene in renal cancer: a multifunctional tumour suppressor. Biochem Soc Trans 36:472–478. https://doi.org/10.1042/BST0360472

    Article  CAS  PubMed  Google Scholar 

  8. Farber LJ, Furge K, Teh BT (2012) Renal cell carcinoma deep sequencing: recent developments. Curr Oncol Rep 14:240–248. https://doi.org/10.1007/s11912-012-0230-3

    Article  CAS  PubMed  Google Scholar 

  9. Schodel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P, Mole DR (2016) Hypoxia, Hypoxia-inducible Transcription Factors, and Renal Cancer. Eur Urol 69:646–657. https://doi.org/10.1016/j.eururo.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  10. Schodel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR (2011) High-resolution genome-wide map** of HIF-binding sites by ChIP-sEq. Blood 117:e207–e217. https://doi.org/10.1182/blood-2010-10-314427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J, Ratcliffe PJ (2009) Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 284:16767–16775. https://doi.org/10.1074/jbc.M901790200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Raval RR, Lau KW, Tran MG et al (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25:5675–5686. https://doi.org/10.1128/MCB.25.13.5675-5686.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kroeger N, Seligson DB, Signoretti S, Yu H, Magyar CE, Huang J, Belldegrun AS, Pantuck AJ (2014) Poor prognosis and advanced clinicopathological features of clear cell renal cell carcinoma (ccRCC) are associated with cytoplasmic subcellular localisation of Hypoxia inducible factor-2alpha. Eur J Cancer 50:1531–1540. https://doi.org/10.1016/j.ejca.2014.01.031

    Article  CAS  PubMed  Google Scholar 

  14. Biswas S, Charlesworth PJ, Turner GD et al (2012) CD31 angiogenesis and combined expression of HIF-1alpha and HIF-2alpha are prognostic in primary clear-cell renal cell carcinoma (CC-RCC), but HIFalpha transcriptional products are not: implications for antiangiogenic trials and HIFalpha biomarker studies in primary CC-RCC. Carcinogenesis 33:1717–1725. https://doi.org/10.1093/carcin/bgs222

    Article  CAS  PubMed  Google Scholar 

  15. Wallace EM, Rizzi JP, Han G et al (2016) A small-molecule antagonist of HIF2alpha is efficacious in preclinical models of renal cell carcinoma. Cancer Res 76:5491–5500. https://doi.org/10.1158/0008-5472.CAN-16-0473

    Article  CAS  PubMed  Google Scholar 

  16. Cho H, Kaelin WG (2016) Targeting HIF2 in clear cell renal cell carcinoma. Cold Spring Harb Symp Quant Biol 81:113–121. https://doi.org/10.1101/sqb.2016.81.030833

    Article  PubMed  Google Scholar 

  17. Palucka AK, Coussens LM (2016) The basis of oncoimmunology. Cell 164:1233–1247. https://doi.org/10.1016/j.cell.2016.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10. https://doi.org/10.1016/j.immuni.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  19. Vandyke K, Zeissig MN, Hewett DR et al (2017) HIF-2alpha promotes dissemination of plasma cells in multiple myeloma by regulating CXCL12/CXCR4 and CCR1. Cancer Res 77:5452–5463. https://doi.org/10.1158/0008-5472.CAN-17-0115

    Article  CAS  PubMed  Google Scholar 

  20. Yamamura K, Uruno T, Shiraishi A et al (2017) The transcription factor EPAS1 links DOCK8 deficiency to atopic skin inflammation via IL-31 induction. Nat Commun 8:13946. https://doi.org/10.1038/ncomms13946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Messai Y, Noman MZ, Hasmim M, Escudier B, Chouaib S (2015) HIF-2alpha/ITPR1 axis: a new saboteur of NK-mediated lysis. Oncoimmunology 4:e985951. https://doi.org/10.4161/2162402X.2014.985951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sato Y, Yoshizato T, Shiraishi Y et al (2013) Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 45:860–867. https://doi.org/10.1038/ng.2699

    Article  CAS  PubMed  Google Scholar 

  23. Gentles AJ, Newman AM, Liu CL et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21:938–945. https://doi.org/10.1038/nm.3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452. https://doi.org/10.1093/nar/gku1003

    Article  CAS  PubMed  Google Scholar 

  25. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Benito-Martin A, Peinado H (2015) FunRich proteomics software analysis, let the fun begin! Proteomics. 15:2555–2556. https://doi.org/10.1002/pmic.201500260

    Article  CAS  PubMed  Google Scholar 

  27. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Liu L, Qu Y et al (2016) Prognostic value of SETD2 expression in patients with metastatic renal cell carcinoma treated with tyrosine kinase inhibitors. J Urol 196:1363–1370. https://doi.org/10.1016/j.juro.2016.06.010

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Xu J, Zhou L, Yun X, Chen L, Wang S, Sun L, Wen Y, Gu J (2011) Hepatitis B virus large surface antigen promotes liver carcinogenesis by activating the Src/PI3K/Akt pathway. Cancer Res 71:7547–7557. https://doi.org/10.1158/0008-5472.CAN-11-2260

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, Dong J, Jia L et al (2017) HIF-2-dependent expression of stem cell factor promotes metastasis in hepatocellular carcinoma. Cancer Lett 393:113–124. https://doi.org/10.1016/j.canlet.2017.01.032

    Article  CAS  PubMed  Google Scholar 

  31. Meininger CJ, Yano H, Rottapel R, Bernstein A, Zsebo KM, Zetter BR (1992) The c-kit receptor ligand functions as a mast cell chemoattractant. Blood 79:958–963

    CAS  PubMed  Google Scholar 

  32. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  33. Disis ML (2010) Immune regulation of cancer. J Clin Oncol 28:4531–4538. https://doi.org/10.1200/JCO.2009.27.2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, van Engeland M, de Bruine AP (2010) VHL and HIF signalling in renal cell carcinogenesis. J Pathol 221:125–138. https://doi.org/10.1002/path.2689

    Article  CAS  PubMed  Google Scholar 

  35. Khazaie K, Blatner NR, Khan MW et al (2011) The significant role of mast cells in cancer. Cancer Metastasis Rev 30:45–60. https://doi.org/10.1007/s10555-011-9286-z

    Article  CAS  PubMed  Google Scholar 

  36. Marech I, Gadaleta CD, Ranieri G (2014) Possible prognostic and therapeutic significance of c-Kit expression, mast cell count and microvessel density in renal cell carcinoma. Int J Mol Sci 15:13060–13076. https://doi.org/10.3390/ijms150713060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen W, Hill H, Christie A et al (2016) Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539:112–117. https://doi.org/10.1038/nature19796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ribatti D (2016) Mast cells as therapeutic target in cancer. Eur J Pharmacol 778:152–157. https://doi.org/10.1016/j.ejphar.2015.02.056

    Article  CAS  PubMed  Google Scholar 

  39. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570. https://doi.org/10.1126/science.1203486

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from National Natural Science Foundation of China (81471621, 81472227, 81472376, 81671628, 31770851, 81702496, 81702497, 81702805, 81772696, 81871306), Shanghai Municipal Natural Science Foundation (17ZR1405100), Shanghai Municipal Commission of Health and Family Planning (20174Y0042), and Zhongshan Hospital Science Foundation (2016ZSQN30, 2017ZSQN18, 2017ZSYQ26). All these study sponsors have no roles in design of the study or collection, analysis, and interpretation of data.

Author information

Authors and Affiliations

Authors

Contributions

Acquisition of data, analysis and interpretation of data, statistical analysis and drafting of the manuscript were carried out by YX, LL and YX; YQ, YC, LC, PZ, YK, YQ, ZW, ZL, XC, ZX, JW, QB, WZ and YY provided technical and material support; JG and JX were responsible for the study concept and design, analysis and interpretation of data, drafting of the manuscript, obtained funding and study supervision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianming Guo or Jiejie Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval and ethical standards

The study was approved by the Clinical Research Ethics Committee of Zhongshan Hospital, Fudan University with the approval number B2015-030. Our study followed the Helsinki declaration.

Informed consent

Informed consent to use clinical samples and information was obtained from each patient.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1723 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ong, Y., Liu, L., **a, Y. et al. Tumor infiltrating mast cells determine oncogenic HIF-2α-conferred immune evasion in clear cell renal cell carcinoma. Cancer Immunol Immunother 68, 731–741 (2019). https://doi.org/10.1007/s00262-019-02314-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02314-y

Keywords

Navigation