Log in

Radiation dose during transarterial chemoembolization and associated factors

  • Original Paper
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To provide detailed reports on radiation doses during transarterial chemoembolization (TACE) in the cone-beam computed tomography (CBCT) era and to identify the associated factors.

Methods

This retrospective study included 385 consecutive patients who underwent initial conventional TACE for hepatocellular carcinoma (HCC) between January 2016 and December 2017. In most cases, CBCT was performed at the common hepatic artery or celiac axis to confirm the location of the tumor and the three-dimensional hepatic artery anatomy. Superselective TACE was performed for all technically feasible cases. Information on total dose area product (DAP), total cumulative air kerma (CAK), fluoroscopy time, and DAP and CAK of each digital subtraction angiography (DSA) and CBCT scan was recorded. Multiple linear regression analysis was performed to identify the factors associated with increased DAP during TACE.

Results

The mean values of total DAP and CAK were 165.2 ± 81.2 (Gy·cm²) and 837.1 ± 571.0 (mGy), respectively. The mean fluoroscopy time was 19.1 ± 10.3 min. The mean DAP caused by fluoroscopy, DSA, and CBCT was 51.8 ± 43.9, 28.0 ± 24.1, and 83.9 ± 42.1 Gy·cm², respectively. Male sex, a high body mass index, largest tumor size > 3 cm, presence of aberrant right and left hepatic arteries, and superselective TACE were identified as independent predictors of increased total DAP during TACE.

Conclusion

We were able to provide detailed reports on radiation doses during TACE and associated factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The authors will share the date upon reasonable request to the corresponding author.

References

  1. Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, Allen C, Al-Raddadi R, Alvis-Guzman N, Amoako Y, Artaman A, Ayele TA, Barac A, Bensenor I, Berhane A, Bhutta Z, Castillo-Rivas J, Chitheer A, Choi JY, Cowie B, Dandona L, Dandona R, Dey S, Dicker D, Phuc H, Ekwueme DU, Zaki MS, Fischer F, Fürst T, Hancock J, Hay SI, Hotez P, Jee SH, Kasaeian A, Khader Y, Khang YH, Kumar A, Kutz M, Larson H, Lopez A, Lunevicius R, Malekzadeh R, McAlinden C, Meier T, Mendoza W, Mokdad A, Moradi-Lakeh M, Nagel G, Nguyen Q, Nguyen G, Ogbo F, Patton G, Pereira DM, Pourmalek F, Qorbani M, Radfar A, Roshandel G, Salomon JA, Sanabria J, Sartorius B, Satpathy M, Sawhney M, Sepanlou S, Shackelford K, Shore H, Sun J, Mengistu DT, Topór-Mądry R, Tran B, Ukwaja KN, Vlassov V, Vollset SE, Vos T, Wakayo T, Weiderpass E, Werdecker A, Yonemoto N, Younis M, Yu C, Zaidi Z, Zhu L, Murray CJL, Naghavi M, Fitzmaurice C (2017) The Burden of Primary Liver Cancer and Underlying Etiologies From 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015. JAMA Oncol 3 (12):1683–1691. doi:https://doi.org/10.1001/jamaoncol.2017.3055

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kishore SA, Bajwa R, Madoff DC (2020) Embolotherapeutic Strategies for Hepatocellular Carcinoma: 2020 Update. Cancers (Basel) 12 (4). doi:https://doi.org/10.3390/cancers12040791

  3. Raoul JL, Forner A, Bolondi L, Cheung TT, Kloeckner R, de Baere T (2019) Updated use of TACE for hepatocellular carcinoma treatment: How and when to use it based on clinical evidence. Cancer Treat Rev 72:28–36. doi:https://doi.org/10.1016/j.ctrv.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  4. Vogl TJ, Gruber-Rouh T (2019) HCC: Transarterial Therapies-What the Interventional Radiologist Can Offer. Dig Dis Sci 64 (4):959–967. doi:https://doi.org/10.1007/s10620-019-05542-5

    Article  CAS  PubMed  Google Scholar 

  5. Hidajat N, Wust P, Felix R, Schroder RJ (2006) Radiation exposure to patient and staff in hepatic chemoembolization: risk estimation of cancer and deterministic effects. Cardiovasc Intervent Radiol 29 (5):791–796. doi:https://doi.org/10.1007/s00270-005-0247-1

    Article  PubMed  Google Scholar 

  6. Degiorgio S, Gerasia R, Liotta F, Maruzzelli L, Cortis K, Miraglia R, Luca A (2018) Radiation Doses to Operators in Hepatobiliary Interventional Procedures. Cardiovasc Intervent Radiol 41 (5):772–780. doi:https://doi.org/10.1007/s00270-017-1870-3

    Article  PubMed  Google Scholar 

  7. Wen X, Jiang X, Li R, Zhang J, Yang P, Shen B (2015) Novel X-Ray Imaging Technology Allows Substantial Patient Radiation Reduction without Image Quality Impairment in Repetitive Transarterial Chemoembolization for Hepatocellular Carcinoma. Acad Radiol 22 (11):1361–1367. doi:https://doi.org/10.1016/j.acra.2015.07.010

    Article  PubMed  Google Scholar 

  8. Vogl TJ, Trapp M, Schroeder H, Mack M, Schuster A, Schmitt J, Neuhaus P, Felix R (2000) Transarterial chemoembolization for hepatocellular carcinoma: volumetric and morphologic CT criteria for assessment of prognosis and therapeutic success-results from a liver transplantation center. Radiology 214 (2):349–357. doi:https://doi.org/10.1148/radiology.214.2.r00fe06349

    Article  CAS  PubMed  Google Scholar 

  9. Kishi Y, Saiura A, Yamamoto J, Koga R, Seki M, Morimura R, Yoshioka R, Kokudo N, Yamaguchi T (2011) Repeat treatment for recurrent hepatocellular carcinoma: is it validated? Langenbecks Arch Surg 396 (7):1093–1100. doi:https://doi.org/10.1007/s00423-011-0837-0

    Article  PubMed  Google Scholar 

  10. Bundy JJ, Chick JFB, Hage AN, Gemmete JJ, Srinivasa RN, Johnson EJ, Christodoulou E, Srinivasa RN (2018) Contemporary Interventional Radiology Dosimetry: Analysis of 4,784 Discrete Procedures at a Single Institution. J Am Coll Radiol 15 (9):1214–1221. doi:https://doi.org/10.1016/j.jacr.2018.06.004

    Article  PubMed  Google Scholar 

  11. Ruiz-Cruces R, Vano E, Carrera-Magariño F, Moreno-Rodriguez F, Soler-Cantos MM, Canis-Lopez M, Hernández-Armas J, Diaz-Romero FJ, Rosales-Espizua F, Fernandez-Soto JM, Sanchez-Casanueva R, Martin-Palanca A, Perez-Martinez M, Gil-Agudo A, Zarca-Diaz MA, Parra-Osorio V, Muñoz Ruiz-Canela JJ, Moreno-Sanchez T, Lopez-Medina A, Moreno-Saiz C, Galan-Montenegro P, Gallego-Beuter JJ, Gonzalez-de-Garay M, Zapata-Jimenez JC, Pastor-Vega JM, Cañete S (2016) Diagnostic reference levels and complexity indices in interventional radiology: a national programme. Eur Radiol 26 (12):4268–4276. doi:https://doi.org/10.1007/s00330-016-4334-2

    Article  CAS  PubMed  Google Scholar 

  12. Vano E, Sanchez R, Fernandez JM, Gallego JJ, Verdu JF, de Garay MG, Azpiazu A, Segarra A, Hernandez MT, Canis M, Diaz F, Moreno F, Palmero J (2009) Patient dose reference levels for interventional radiology: a national approach. Cardiovasc Intervent Radiol 32 (1):19–24. doi:https://doi.org/10.1007/s00270-008-9439-9

    Article  PubMed  Google Scholar 

  13. Miller DL, Kwon D, Bonavia GH (2009) Reference levels for patient radiation doses in interventional radiology: proposed initial values for U.S. practice. Radiology 253 (3):753–764. doi:https://doi.org/10.1148/radiol.2533090354

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schernthaner RE, Duran R, Chapiro J, Wang Z, Geschwind JF, Lin M (2015) A new angiographic imaging platform reduces radiation exposure for patients with liver cancer treated with transarterial chemoembolization. Eur Radiol 25 (11):3255–3262. doi:https://doi.org/10.1007/s00330-015-3717-0

    Article  PubMed  PubMed Central  Google Scholar 

  15. Javor D, Moyses J, Loewe C, Schernthaner RE (2021) Radiation dose reduction capabilities of a new C-arm system with optimized hard- and software. Eur J Radiol 134:109367. doi:https://doi.org/10.1016/j.ejrad.2020.109367

    Article  PubMed  Google Scholar 

  16. Vogl TJ, Alizadeh LS, Maeder R, Naguib NN, Herrmann E, Bickford MW, Burck I, Albrecht MH (2019) Advanced Robotic Angiography Systems for Image Guidance During Conventional Transarterial Chemoembolization: Impact on Radiation Dose and Image Quality. Invest Radiol 54 (3):153–159. doi:https://doi.org/10.1097/rli.0000000000000519

    Article  PubMed  Google Scholar 

  17. Kothary N, Abdelmaksoud MH, Tognolini A, Fahrig R, Rosenberg J, Hovsepian DM, Ganguly A, Louie JD, Kuo WT, Hwang GL, Holzer A, Sze DY, Hofmann LV (2011) Imaging guidance with C-arm CT: prospective evaluation of its impact on patient radiation exposure during transhepatic arterial chemoembolization. J Vasc Interv Radiol 22 (11):1535–1543. doi:https://doi.org/10.1016/j.jvir.2011.07.008

    Article  PubMed  Google Scholar 

  18. Jonczyk M, Collettini F, Geisel D, Schnapauff D, Böning G, Wieners G, Gebauer G (2018) Radiation exposure during TACE procedures using additional cone-beam CT (CBCT) for guidance: safety and precautions. Acta Radiol 59 (11):1277–1284. doi:https://doi.org/10.1177/0284185118761203

    Article  CAS  PubMed  Google Scholar 

  19. Piron L, Le Roy J, Cassinotto C, Delicque J, Belgour A, Allimant C, Beregi JP, Greffier J, Molinari N, Guiu B (2019) Radiation Exposure During Transarterial Chemoembolization: Angio-CT Versus Cone-Beam CT. Cardiovasc Intervent Radiol 42 (11):1609–1618. doi:https://doi.org/10.1007/s00270-019-02269-8

    Article  PubMed  Google Scholar 

  20. Miyayama S (2020) Treatment strategy of transarterial chemoembolization for hepatocellular carcinoma. Applied Sciences 10 (20):7337

    Article  CAS  Google Scholar 

  21. Lin PJ (2007) The operation logic of automatic dose control of fluoroscopy system in conjunction with spectral sha** filters. Med Phys 34 (8):3169–3172. doi:https://doi.org/10.1118/1.2752576

    Article  PubMed  Google Scholar 

  22. Kloeckner R, Bersch A, dos Santos DP, Schneider J, Düber C, Pitton MB (2012) Radiation exposure in nonvascular fluoroscopy-guided interventional procedures. Cardiovasc Intervent Radiol 35 (3):613–620. doi:https://doi.org/10.1007/s00270-011-0206-y

    Article  PubMed  Google Scholar 

  23. Cornelis FH, Borgheresi A, Petre EN, Santos E, Solomon SB, Brown K (2018) Hepatic Arterial Embolization Using Cone Beam CT with Tumor Feeding Vessel Detection Software: Impact on Hepatocellular Carcinoma Response. Cardiovasc Intervent Radiol 41 (1):104–111. doi:https://doi.org/10.1007/s00270-017-1758-2

    Article  CAS  PubMed  Google Scholar 

  24. Vano E, Gonzalez L, Fernandez JM, Prieto C, Guibelalde E (2006) Influence of patient thickness and operation modes on occupational and patient radiation doses in interventional cardiology. Radiat Prot Dosimetry 118 (3):325–330. doi:https://doi.org/10.1093/rpd/nci369

    Article  CAS  PubMed  Google Scholar 

  25. Choi TW, Chung JW, Cha BK, Choi KN, Park S, Son JW, Choi CH (2020) Feasibility of dosimetric measurements using Al2O3:C OSL dosimeter during fluoroscopy-guided procedures. J Radiol Prot. doi:https://doi.org/10.1088/1361-6498/abbf3a

    Article  PubMed  Google Scholar 

  26. Mason C, Katzmarzyk PT (2009) Variability in waist circumference measurements according to anatomic measurement site. Obesity (Silver Spring) 17 (9):1789–1795. doi:https://doi.org/10.1038/oby.2009.87

    Article  PubMed  Google Scholar 

  27. Zhao Y, Fang Z, Luo J, Liu Q, Xu G, Pan H, Wei W, Yan Z (2015) Evaluation of extrahepatic collateral arteries in hepatocellular carcinoma in three independent groups in a single center. Exp Ther Med 10 (6):2366–2374. doi:https://doi.org/10.3892/etm.2015.2822

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pung L, Ahmad M, Mueller K, Rosenberg J, Stave C, Hwang GL, Shah R, Kothary N (2017) The Role of Cone-Beam CT in Transcatheter Arterial Chemoembolization for Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. J Vasc Interv Radiol 28 (3):334–341. doi:https://doi.org/10.1016/j.jvir.2016.11.037

    Article  PubMed  Google Scholar 

  29. Yao X, Yan D, Jiang X, Li X, Zeng H, Liu D, Li H (2018) Dual-phase Cone-beam CT-based Navigation Imaging Significantly Enhances Tumor Detectability and Aids Superselective Transarterial Chemoembolization of Liver Cancer. Acad Radiol 25 (8):1031–1037. doi:https://doi.org/10.1016/j.acra.2017.12.022

    Article  PubMed  Google Scholar 

  30. Miyayama S, Yamashiro M, Hattori Y, Orito N, Matsui K, Tsuji K, Yoshida M, Matsui O (2011) Efficacy of cone-beam computed tomography during transcatheter arterial chemoembolization for hepatocellular carcinoma. Jpn J Radiol 29 (6):371–377. doi:https://doi.org/10.1007/s11604-011-0568-8

    Article  PubMed  Google Scholar 

  31. Connolly GC, Chen R, Hyrien O, Mantry P, Bozorgzadeh A, Abt P, Khorana AA (2008) Incidence, risk factors and consequences of portal vein and systemic thromboses in hepatocellular carcinoma. Thromb Res 122 (3):299–306. doi:https://doi.org/10.1016/j.thromres.2007.10.009

    Article  CAS  PubMed  Google Scholar 

  32. Chan SL, Chong CC, Chan AW, Poon DM, Chok KS (2016) Management of hepatocellular carcinoma with portal vein tumor thrombosis: Review and update at 2016. World J Gastroenterol 22 (32):7289–7300. doi:https://doi.org/10.3748/wjg.v22.i32.7289

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sereni CP, Rodgers SK, Kirby CL, Goykhman I (2017) Portal vein thrombus and infiltrative HCC: a pictoral review. Abdom Radiol (NY) 42 (1):159–170. doi:https://doi.org/10.1007/s00261-016-0855-z

    Article  PubMed  Google Scholar 

  34. Saba L, Mallarini G (2011) Anatomic variations of arterial liver vascularization: an analysis by using MDCTA. Surg Radiol Anat 33 (7):559–568. doi:https://doi.org/10.1007/s00276-011-0778-x

    Article  PubMed  Google Scholar 

  35. Gümüs H, Bükte Y, Özdemir E, Sentürk S, Tekbas G, Önder H, Ekici F, Bilici A (2013) Variations of the celiac trunk and hepatic arteries: a study with 64-detector computed tomographic angiography. Eur Rev Med Pharmacol Sci 17 (12):1636–1641

    PubMed  Google Scholar 

  36. Covey AM, Brody LA, Maluccio MA, Getrajdman GI, Brown KT (2002) Variant hepatic arterial anatomy revisited: digital subtraction angiography performed in 600 patients. Radiology 224 (2):542–547. doi:https://doi.org/10.1148/radiol.2242011283

    Article  PubMed  Google Scholar 

  37. Löschner C, Nagel SN, Kausche S, Teichgräber U (2015) Hepatic arterial supply in 1297 CT-angiographies. Rofo 187 (4):276–282. doi:https://doi.org/10.1055/s-0034-1385816

    Article  PubMed  Google Scholar 

  38. López-Andújar R, Moya A, Montalvá E, Berenguer M, De Juan M, San Juan F, Pareja E, Vila JJ, Orbis F, Prieto M, Mir J (2007) Lessons learned from anatomic variants of the hepatic artery in 1,081 transplanted livers. Liver Transpl 13 (10):1401–1404. doi:https://doi.org/10.1002/lt.21254

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been posted as a preprint as follows. Author names: Tae Won Choi, ** Wook Chung. Title: Radiation Dose During Transarterial Chemoembolization and Risk Factors for High Radiation Dose. Name of the preprint server: https://www.researchsquare.com/article/rs-3190102/v1. Object type: Preprint. Date of most recent version posted: 18 Aug, 2023. Date accessed: 21 Nov, 2023. DOI: https://doi.org/10.21203/rs.3.rs-3190102/v1.

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Tae Won Choi, ** Wook Chung. Data curation: Tae Won Choi, ** Wook Chung. Formal analysis: Tae Won Choi, ** Wook Chung. Investigation: Tae Won Choi, ** Wook Chung. Methodology: Tae Won Choi, ** Wook Chung. Supervision: ** Wook Chung. Writing-original draft: Tae Won Choi. Writing-review and editing: Tae Won Choi, ** Wook Chung.

Corresponding author

Correspondence to ** Wook Chung.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

The institutional review board of Seoul National University Hospital approved the present study and waived the requirement for informed consent because of its retrospective design. This study was conducted according to the Declaration of Helsinki and the International Conference on Harmonization Good Clinical Practices.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, T.W., Chung, J.W. Radiation dose during transarterial chemoembolization and associated factors. Abdom Radiol (2024). https://doi.org/10.1007/s00261-024-04370-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00261-024-04370-0

Keywords

Navigation