Log in

Imaging of fibropolycystic liver disease

  • Special Section: Benign Biliary Disease
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Fibropolycystic liver diseases (FLDs) make up a rare spectrum of heritable hepatobiliary diseases resulting from congenital ductal plate malformations (DPMs) due to the dysfunction of proteins expressed on the primary cilia of cholangiocytes. The embryonic development of the ductal plate is key to understanding this spectrum of diseases. In particular, DPMs can result in various degrees of intrahepatic duct involvement and a wide spectrum of cholangiopathies, including congenital hepatic fibrosis, Caroli disease, polycystic liver disease, and Von Meyenberg complexes. The most common clinical manifestations of FLDs are portal hypertension, cholestasis, cholangitis, and (in rare cases) cholangiocarcinoma. This article reviews recent updates in the pathophysiology, imaging, and clinical management of FLDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lasagni, A., et al., Fibrocystic liver disease: novel concepts and translational perspectives. Transl Gastroenterol Hepatol, 2021. 6: p. 26.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Waters, A.M. and P.L. Beales, Ciliopathies: an expanding disease spectrum. Pediatr Nephrol, 2011. 26(7): p. 1039-56.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen, I.Y., C.L. Whitney-Miller, and X. Liao, Congenital hepatic fibrosis and its mimics: a clinicopathologic study of 19 cases at a single institution. Diagn Pathol, 2021. 16(1): p. 81.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Finotti, M., et al., Liver transplantation for rare liver diseases and rare indications for liver transplant. Translational gastroenterology and hepatology, 2021. 6: p. 27-27.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ogawa, M., et al., Generation of functional ciliated cholangiocytes from human pluripotent stem cells. Nat Commun, 2021. 12(1): p. 6504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lemaigre, F.P., Development of the Intrahepatic and Extrahepatic Biliary Tract: A Framework for Understanding Congenital Diseases. Annu Rev Pathol, 2020. 15: p. 1-22.

    Article  CAS  PubMed  Google Scholar 

  7. Leigh, M.W., et al., Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med, 2009. 11(7): p. 473-87.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Roskams, T. and V. Desmet, Embryology of extra- and intrahepatic bile ducts, the ductal plate. Anat Rec (Hoboken), 2008. 291(6): p. 628-35.

    Article  CAS  Google Scholar 

  9. Mitchison, H.M. and E.M. Valente, Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol, 2017. 241(2): p. 294-309.

    Article  PubMed  Google Scholar 

  10. Masyuk, A.I., T.V. Masyuk, and N.F. LaRusso, Cholangiocyte primary cilia in liver health and disease. Dev Dyn, 2008. 237(8): p. 2007-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Desmet, V.J., Congenital diseases of intrahepatic bile ducts: variations on the theme "ductal plate malformation". Hepatology, 1992. 16(4): p. 1069-83.

    Article  CAS  PubMed  Google Scholar 

  12. Mimatsu, K., et al., Preoperatively undetected solitary bile duct hamartoma (von Meyenburg complex) associated with esophageal carcinoma. Int J Clin Oncol, 2008. 13(4): p. 365-8.

    Article  PubMed  Google Scholar 

  13. Redston, M.S. and I.R. Wanless, The hepatic von Meyenburg complex: prevalence and association with hepatic and renal cysts among 2843 autopsies [corrected]. Mod Pathol, 1996. 9(3): p. 233-7.

    CAS  PubMed  Google Scholar 

  14. Gunay-Aygun, M., Liver and kidney disease in ciliopathies. Am J Med Genet C Semin Med Genet, 2009. 151C(4): p. 296-306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, S., et al., Lesions of biliary hamartoms can be diagnosed by ultrasonography, computed tomography and magnetic resonance imaging. Int J Clin Exp Med, 2014. 7(10): p. 3370-7.

    PubMed  PubMed Central  Google Scholar 

  16. Semelka, R.C., et al., Biliary hamartomas: solitary and multiple lesions shown on current MR techniques including gadolinium enhancement. J Magn Reson Imaging, 1999. 10(2): p. 196-201.

    Article  CAS  PubMed  Google Scholar 

  17. Bachler, P., et al., Multimodality Imaging of Liver Infections: Differential Diagnosis and Potential Pitfalls. Radiographics, 2016. 36(4): p. 1001-23.

    Article  PubMed  Google Scholar 

  18. Baron, R.L., W.L. Campbell, and G.D. Dodd, 3rd, Peribiliary cysts associated with severe liver disease: imaging-pathologic correlation. AJR Am J Roentgenol, 1994. 162(3): p. 631-6.

    Article  CAS  PubMed  Google Scholar 

  19. Ryu, Y., et al., Multicystic biliary hamartoma: imaging findings in four cases. Abdom Imaging, 2010. 35(5): p. 543-7.

    Article  PubMed  Google Scholar 

  20. Xu, A.M., et al., Intrahepatic cholangiocarcinoma arising in multiple bile duct hamartomas: report of two cases and review of the literature. Eur J Gastroenterol Hepatol, 2009. 21(5): p. 580-4.

    Article  PubMed  Google Scholar 

  21. Bhalla, A., et al., Histopathological evidence of neoplastic progression of von Meyenburg complex to intrahepatic cholangiocarcinoma. Hum Pathol, 2017. 67: p. 217-224.

    Article  CAS  PubMed  Google Scholar 

  22. Rawat, D., et al., Phenotypic variation and long-term outcome in children with congenital hepatic fibrosis. J Pediatr Gastroenterol Nutr, 2013. 57(2): p. 161-6.

    Article  PubMed  Google Scholar 

  23. Johnson, C.A., P. Gissen, and C. Sergi, Molecular pathology and genetics of congenital hepatorenal fibrocystic syndromes. J Med Genet, 2003. 40(5): p. 311-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeitoun, D., et al., Congenital hepatic fibrosis: CT findings in 18 adults. Radiology, 2004. 231(1): p. 109-16.

    Article  PubMed  Google Scholar 

  25. Rock, N. and V. McLin, Liver involvement in children with ciliopathies. Clin Res Hepatol Gastroenterol, 2014. 38(4): p. 407-14.

    Article  CAS  PubMed  Google Scholar 

  26. Bayraktar, Y., et al., Congenital hepatic fibrosis associated with cavernous transformation of the portal vein. Hepatogastroenterology, 1997. 44(18): p. 1588-94.

    CAS  PubMed  Google Scholar 

  27. Bergmann, C., et al., Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int, 2005. 67(3): p. 829-48.

    Article  CAS  PubMed  Google Scholar 

  28. Adeva, M., et al., Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine (Baltimore), 2006. 85(1): p. 1-21.

    Article  Google Scholar 

  29. Turkbey, B., et al., Autosomal recessive polycystic kidney disease and congenital hepatic fibrosis (ARPKD/CHF). Pediatr Radiol, 2009. 39(2): p. 100-11.

    Article  PubMed  Google Scholar 

  30. Srinath, A. and B.L. Shneider, Congenital hepatic fibrosis and autosomal recessive polycystic kidney disease. J Pediatr Gastroenterol Nutr, 2012. 54(5): p. 580-7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yonem, O. and Y. Bayraktar, Is portal vein cavernous transformation a component of congenital hepatic fibrosis? World J Gastroenterol, 2007. 13(13): p. 1928-9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brancatelli, G., et al., Fibropolycystic liver disease: CT and MR imaging findings. Radiographics, 2005. 25(3): p. 659-70.

    Article  PubMed  Google Scholar 

  33. Cannella, R., et al., Congenital Cystic Lesions of the Bile Ducts: Imaging-Based Diagnosis. Curr Probl Diagn Radiol, 2020. 49(4): p. 285-293.

    Article  PubMed  Google Scholar 

  34. Yoneda, N., et al., Benign Hepatocellular Nodules: Hepatobiliary Phase of Gadoxetic Acid-enhanced MR Imaging Based on Molecular Background. Radiographics, 2016. 36(7): p. 2010-2027.

    Article  PubMed  Google Scholar 

  35. Mamone, G., et al., Magnetic resonance imaging of fibropolycystic liver disease: the spectrum of ductal plate malformations. Abdom Radiol (NY), 2019. 44(6): p. 2156-2171.

    Article  Google Scholar 

  36. CT/MRI LI-RADS® v2018 CORE. [Accessed 2022 04/22/2022]; Available from: https://www.acr.org/-/media/ACR/Files/RADS/LI-RADS/LI-RADS-2018-Core.pdf.

  37. Arora, A. and S.K. Sarin, Multimodality imaging of obliterative portal venopathy: what every radiologist should know. Br J Radiol, 2015. 88(1046): p. 20140653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hartung, E.A., et al., Magnetic resonance elastography to quantify liver disease severity in autosomal recessive polycystic kidney disease. Abdom Radiol (NY), 2021. 46(2): p. 570-580.

    Article  Google Scholar 

  39. D'Agnolo, H.M., et al., Creating an effective clinical registry for rare diseases. United European Gastroenterol J, 2016. 4(3): p. 333-8.

    Article  PubMed  Google Scholar 

  40. Lee-Law, P.Y., et al., Genetics of polycystic liver diseases. Curr Opin Gastroenterol, 2019. 35(2): p. 65-72.

    Article  CAS  PubMed  Google Scholar 

  41. Besse, W., et al., Isolated polycystic liver disease genes define effectors of polycystin-1 function. J Clin Invest, 2017. 127(5): p. 1772-1785.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Perugorria, M.J., et al., Polycystic liver diseases: advanced insights into the molecular mechanisms. Nat Rev Gastroenterol Hepatol, 2014. 11(12): p. 750-61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wills, E.S., R. Roepman, and J.P. Drenth, Polycystic liver disease: ductal plate malformation and the primary cilium. Trends Mol Med, 2014. 20(5): p. 261-70.

    Article  CAS  PubMed  Google Scholar 

  44. Kim, H., et al., Clinical Correlates of Mass Effect in Autosomal Dominant Polycystic Kidney Disease. PLoS One, 2015. 10(12): p. e0144526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Qian, Q., et al., Clinical profile of autosomal dominant polycystic liver disease. Hepatology, 2003. 37(1): p. 164-71.

    Article  PubMed  Google Scholar 

  46. Van Keimpema, L., et al., Patients with isolated polycystic liver disease referred to liver centres: clinical characterization of 137 cases. Liver Int, 2011. 31(1): p. 92-8.

    Article  PubMed  Google Scholar 

  47. Zhang, Z.Y., Z.M. Wang, and Y. Huang, Polycystic liver disease: Classification, diagnosis, treatment process, and clinical management. World J Hepatol, 2020. 12(3): p. 72-83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Waanders, E., et al., Carbohydrate antigen 19-9 is extremely elevated in polycystic liver disease. Liver Int, 2009. 29(9): p. 1389-95.

    Article  CAS  PubMed  Google Scholar 

  49. van Aerts, R.M.M., et al., Clinical management of polycystic liver disease. J Hepatol, 2018. 68(4): p. 827-837.

    Article  PubMed  Google Scholar 

  50. Bae, K.T., et al., Magnetic resonance imaging evaluation of hepatic cysts in early autosomal-dominant polycystic kidney disease: the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease cohort. Clin J Am Soc Nephrol, 2006. 1(1): p. 64-9.

    Article  PubMed  Google Scholar 

  51. Mortelé, K.J. and H.E. Peters, Multimodality imaging of common and uncommon cystic focal liver lesions. Semin Ultrasound CT MR, 2009. 30(5): p. 368-86.

    Article  PubMed  Google Scholar 

  52. Gigot, J.F., et al., Adult polycystic liver disease: is fenestration the most adequate operation for long-term management? Ann Surg, 1997. 225(3): p. 286-94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schnelldorfer, T., et al., Polycystic liver disease: a critical appraisal of hepatic resection, cyst fenestration, and liver transplantation. Ann Surg, 2009. 250(1): p. 112-8.

    Article  PubMed  Google Scholar 

  54. Russell, R.T. and C.W. Pinson, Surgical management of polycystic liver disease. World J Gastroenterol, 2007. 13(38): p. 5052-9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Drenth, J.P., et al., Medical and surgical treatment options for polycystic liver disease. Hepatology, 2010. 52(6): p. 2223-30.

    Article  PubMed  Google Scholar 

  56. Caroli, J., et al., [Congenital polycystic dilation of the intrahepatic bile ducts; attempt at classification]. Sem Hop, 1958. 34(8/2): p. 488-95/SP.

    CAS  PubMed  Google Scholar 

  57. Soares, K.C., et al., Choledochal cysts: presentation, clinical differentiation, and management. J Am Coll Surg, 2014. 219(6): p. 1167-80.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fevery, J., et al., Congenital dilatation of the intrahepatic bile ducts associated with the development of amyloidosis. Gut, 1972. 13(8): p. 604-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tsuchiya, R., R. Nishimura, and T. Ito, Congenital cystic dilation of the bile duct associated with Laurence-Moon-Biedl-Bardet syndrome. Arch Surg, 1977. 112(1): p. 82-4.

    Article  CAS  PubMed  Google Scholar 

  60. Habib, S., et al., Caroli's disease and orthotopic liver transplantation. Liver Transpl, 2006. 12(3): p. 416-21.

    Article  PubMed  Google Scholar 

  61. Giovanardi, R.O., Monolobar Caroli's disease in an adult. Case report. Hepatogastroenterology, 2003. 50(54): p. 2185-7.

    PubMed  Google Scholar 

  62. Waechter, F.L., et al., The role of liver transplantation in patients with Caroli's disease. Hepatogastroenterology, 2001. 48(39): p. 672-4.

    CAS  PubMed  Google Scholar 

  63. Todani, T., et al., Congenital bile duct cysts: Classification, operative procedures, and review of thirty-seven cases including cancer arising from choledochal cyst. Am J Surg, 1977. 134(2): p. 263-9.

    Article  CAS  PubMed  Google Scholar 

  64. Ciambotti, G.F., et al., Right-sided monolobar Caroli's disease with intrahepatic stones: nonsurgical management with ERCP. Gastrointest Endosc, 1994. 40(6): p. 761-4.

    Article  CAS  PubMed  Google Scholar 

  65. Lewin, M., et al., Diffuse Versus Localized Caroli Disease: A Comparative MRCP Study. AJR Am J Roentgenol, 2021. 216(6): p. 1530-1538.

    Article  PubMed  Google Scholar 

  66. Fahrner, R., S.G. Dennler, and D. Inderbitzin, Risk of malignancy in Caroli disease and syndrome: A systematic review. World J Gastroenterol, 2020. 26(31): p. 4718-4728.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fard-Aghaie, M.H., et al., The rate of cholangiocarcinoma in Caroli Disease A German multicenter study. HPB (Oxford), 2022. 24(2): p. 267-276.

    Article  Google Scholar 

  68. Chung, Y.E., et al., Varying appearances of cholangiocarcinoma: radiologic-pathologic correlation. Radiographics, 2009. 29(3): p. 683-700.

    Article  PubMed  Google Scholar 

  69. Jhaveri, K.S. and H. Hosseini-Nik, MRI of cholangiocarcinoma. J Magn Reson Imaging, 2015. 42(5): p. 1165-79.

    Article  PubMed  Google Scholar 

  70. Soares, K.C., et al., Pediatric choledochal cysts: diagnosis and current management. Pediatr Surg Int, 2017. 33(6): p. 637-650.

    Article  PubMed  Google Scholar 

  71. Moslim, M.A., et al., Surgical Management of Caroli's Disease: Single Center Experience and Review of the Literature. J Gastrointest Surg, 2015. 19(11): p. 2019-27.

    Article  PubMed  Google Scholar 

  72. Arora, A., et al., Choledochal cysts: sequel of the malformed embryological ductal plate? Abdom Imaging, 2015. 40(6): p. 2062-4.

    Article  PubMed  Google Scholar 

  73. Kamisawa, T., et al., Diagnostic criteria for pancreaticobiliary maljunction 2013. J Hepatobiliary Pancreat Sci, 2014. 21(3): p. 159-61.

    Article  PubMed  Google Scholar 

  74. Shin, H.J., et al., Key imaging features for differentiating cystic biliary atresia from choledochal cyst: prenatal ultrasonography and postnatal ultrasonography and MRI. Ultrasonography, 2021. 40(2): p. 301-311.

    Article  PubMed  Google Scholar 

  75. Zhen, C., et al., Laparoscopic excision versus open excision for the treatment of choledochal cysts: a systematic review and meta-analysis. Int Surg, 2015. 100(1): p. 115-22.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jones, R.E., et al., A narrative review of the modern surgical management of pediatric choledochal cysts. Transl Gastroenterol Hepatol, 2021. 6: p. 37.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Martins-Filho, S.N. and J. Putra, Hepatic mesenchymal hamartoma and undifferentiated embryonal sarcoma of the liver: a pathologic review. Hepat Oncol, 2020. 7(2): p. HEP19.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chung, T., et al., Genetic, Clinicopathological, and Radiological Features of Intrahepatic Cholangiocarcinoma with Ductal Plate Malformation Pattern. Gut Liver, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nguyen Canh, H., et al., Diversity in cell differentiation, histology, phenotype and vasculature of mass-forming intrahepatic cholangiocarcinomas. Histopathology, 2021. 79(5): p. 731-750.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kedar Sharbidre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharbidre, K., Zahid, M., Venkatesh, S.K. et al. Imaging of fibropolycystic liver disease. Abdom Radiol 47, 2356–2370 (2022). https://doi.org/10.1007/s00261-022-03565-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-022-03565-7

Keywords

Navigation