Log in

Digital PCR: a tool in clostridial mutant selection and detection

  • Methods and Protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The ClosTron mutagenesis system has enabled researchers to efficiently edit the clostridial genome. Since site-specific insertion of the mobile ClosTron insert may cause errors, validation is key. In this paper we describe the use of digital PCR (dPCR) as an alternative tool in selecting clostridial mutant strains. Clostridium perfringens chitinase mutant strains were constructed in which the mobile ClosTron intron was inserted into one of the chitinase genes. On-target insertion of the mobile intron was validated through conventional PCR. In order to confirm the absence of off-target insertions, dPCR was used to determine the amount of the ClosTron intron as well as the amount of a reference gene, located in close proximity to the interrupted gene. Subsequently, mutant strains containing an equivalent amount of both genes were selected as these do not contain additional off-target mobile ClosTron inserts. The outcome of this selection procedure was confirmed through a validated PCR-based approach. In addition to its application in mutant selection, dPCR can be used in other aspects of clostridial research, such as the distinction and easy quantification of different types of strains (wildtype vs. mutant) in complex matrices, such as faecal samples, a process in which other techniques are hampered by bacterial overgrowth (plating) or inhibition by matrix contaminants (qPCR). This research demonstrates that dPCR is indeed a high-throughput method in the selection of clostridial insertion mutants as well as a robust and accurate tool in distinguishing between wildtype and mutant C. perfringens strains, even in a complex matrix such as faeces.

Key points

Digital PCR as an alternative in ClosTron mutant selection

Digital PCR is an accurate tool in bacterial quantification in a complex matrix

Digital PCR is an alternative tool with great potential to microbiological research

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the study are available from the corresponding author on reasonable request.

References

  1. Becker L, Steglich M, Fuchs S, Werner G, Nübel U (2016) Comparison of six commercial kits to extract bacterial chromosome and plasmid DNA for MiSeq sequencing. Sci Rep 6(1):28063. https://doi.org/10.1038/srep28063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time pcr experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y, McClane BA, Fisher DJ, Rood JI, Gupta P (2005) Construction of an alpha toxin gene knockout mutant of Clostridium perfringens type A by use of a mobile group II intron. AEM 71(11):7542–7547. https://doi.org/10.1128/AEM.71.11.7542-7547.2005

    Article  CAS  Google Scholar 

  4. Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP (2012) Targeted mutagenesis of the Clostridium acetobutylicum acetone–butanol–ethanol fermentation pathway. Metab Eng 14(6):630–641. https://doi.org/10.1016/j.ymben.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  5. Harzevili FD, Hiligsmann S (2017) In: Harzevili FD, Hiligsmann S (eds) Microbial fuels. CRC Press. https://doi.org/10.1201/9781351246101

    Chapter  Google Scholar 

  6. Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70(3):452–464. https://doi.org/10.1016/j.mimet.2007.05.021

    Article  CAS  PubMed  Google Scholar 

  7. Jang IJA, Choi SY, Lee JI, Lee SY (2014) Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity. Metab Eng 23:165–174. https://doi.org/10.1016/j.ymben.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  8. Jang KWJ, Im JA, Palaniswamy S, Yao Z, Lee HL, Yoon YR, Seong HJ, Papoutsakis ET, Lee SY (2023) Efforts to install a heterologous Wood-Ljungdahl pathway in Clostridium acetobutylicum enable the identification of the native tetrahydrofolate (THF) cycle and result in early induction of solvents. Metab Eng 77:188–198. https://doi.org/10.1016/j.ymben.2023.04.005

    Article  CAS  PubMed  Google Scholar 

  9. Joseph RC, Kim NM, Sandoval NR (2018) Recent developments of the synthetic biology toolkit for Clostridium. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.00154

  10. Kanagal-Shamanna R (2016) Digital PCR: principles and applications. Clin Appl PCR:43–50. https://doi.org/10.1007/978-1-4939-3360-0_5

  11. Keyburn AL, Bannam TL, Moore RJ, Rood JI (2010) NetB, a pore-forming toxin from necrotic enteritis strains of Clostridium perfringens. Toxins 2(7):1913–1927. https://doi.org/10.3390/toxins2071913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuehne SA, Minton NP (2012) ClosTron-mediated engineering of Clostridium. Bioengineered 3(4):247–254. https://doi.org/10.4161/bioe.21004

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kwon YM, Ricke SC (2000) Efficient amplification of multiple transposon-flanking sequences. J Microbiol Methods 41(3):195–199. https://doi.org/10.1016/S0167-7012(00)00159-7

    Article  CAS  PubMed  Google Scholar 

  14. Lee SY, Jang YS, Lee JY, Lee J, Park JH, Im JA, Eom MH, Lee J, Lee SH, Song H, Cho JH, Seung DY (2012) Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. MBio 3(5). https://doi.org/10.1128/mBio.00314-12

  15. Lepp D, Roxas B, Parreira VR, Marri PR, Rosey EL, Gong J, Songer JG, Vedantam G, Prescott JF (2010) Identification of novel pathogenicity loci in Clostridium perfringens strains that cause avian necrotic enteritis. PLoS One 5(5):e10795. https://doi.org/10.1371/journal.pone.0010795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liao C, Seo SO, Celik V, Liu H, Kong W, Wang Y, Blaschek H, ** YS, Lu T (2015) Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. PNAS 112(27):8505–8510. https://doi.org/10.1073/pnas.1423143112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Little GT, Willson BJ, Heap JT, Winzer K, Minton NP (2018) The butanol producing microbe Clostridium beijerinckii NCIMB 14988 manipulated using forward and reverse genetic tools. Biotechnol J 13(11):1700711. https://doi.org/10.1002/biot.201700711

    Article  CAS  Google Scholar 

  18. Mohr G, Hong W, Zhang J, Cui G, Yang Y, Cui Q, Liu Y, Lambowitz AM (2013) A targetron system for gene targeting in thermophiles and its application in Clostridium thermocellum. PLoS ONE 8(7):e69032. https://doi.org/10.1371/journal.pone.0069032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8(4):151–156. https://doi.org/10.1111/j.1472-765X.1989.tb00262.x

    Article  CAS  Google Scholar 

  20. Salipante SJ, Jerome KR (2020) Digital PCR—An emerging technology with broad applications in microbiology. Clin Chem 66(1):117–123. https://doi.org/10.1373/clinchem.2019.304048

    Article  PubMed  Google Scholar 

  21. Shao L, Hu S, Yang Y, Gu Y, Chen J, Yang Y, Jiang W, Yang S (2007) Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res 17(11):963–965. https://doi.org/10.1038/cr.2007.91

    Article  CAS  PubMed  Google Scholar 

  22. Shen A (2019) Expanding the Clostridioides difficile genetics toolbox. J Bacteriol 201(14). https://doi.org/10.1128/JB.00089-19

  23. Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67(1):6–20. https://doi.org/10.1111/j.1574-6941.2008.00629.x

    Article  CAS  PubMed  Google Scholar 

  24. The dMIQE Group, Huggett JF (2020) The digital MIQE guidelines update: minimum information for publication of quantitative digital PCR experiments for 2020. Clin Chem 66(8):1012–1029. https://doi.org/10.1093/clinchem/hvaa125

    Article  Google Scholar 

  25. Vogelstein B, Kinzler KW (1999) Digital PCR. PNAS 96(16):9236–9241. https://doi.org/10.1073/pnas.96.16.9236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vynck M, Vandesompele J, Nijs N, Menten B, De Ganck A, Thas O (2016) Flexible analysis of digital PCR experiments using generalized linear mixed models. Biomol 9:1–13. https://doi.org/10.1016/j.bdq.2016.06.001

    Article  CAS  Google Scholar 

  27. Wade B, Keyburn AL, Haring V, Ford M, Rood JI, Moore RJ (2016) The adherent abilities of Clostridium perfringens strains are critical for the pathogenesis of avian necrotic enteritis. Vet Microbiol 197:53–61. https://doi.org/10.1016/j.vetmic.2016.10.028

    Article  CAS  PubMed  Google Scholar 

  28. Wang S, Hong W, Dong S, Zhang Z-T, Zhang J, Wang L, Wang Y (2018) Genome engineering of Clostridium difficile using the CRISPR-Cas9 system. Clin Microbiol Infect 24(10):1095–1099. https://doi.org/10.1016/j.cmi.2018.03.026

    Article  CAS  PubMed  Google Scholar 

  29. Yoo H-B, Lim H-M, Yang I, Kim S-K, Park S-R (2011) Flow cytometric investigation on degradation of macro-DNA by common laboratory manipulations. J Biophys Chem 02(2):102–111. https://doi.org/10.4236/jbpc.2011.22013

    Article  CAS  Google Scholar 

  30. Yu Q, Lepp D, Mehdizadeh Gohari I, Wu T, Zhou H, Yin X, Yu H, Prescott JF, Nie S-P, **e M-Y, Gong J (2017) The Agr-like quorum sensing system is required for pathogenesis of necrotic enteritis caused by Clostridium perfringens in poultry. Infect Immun 85(6). https://doi.org/10.1128/IAI.00975-16

  31. Zhang J, Liu Y-J, Cui G-Z, Cui Q (2015) A novel arabinose-inducible genetic operation system developed for Clostridium cellulolyticum. Biotechnol Biofuels 8(1):36. https://doi.org/10.1186/s13068-015-0214-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The researcher Dierick Evelien was supported by Research Foundation Flanders FWO (Fonds Wetenschappelijk Onderzoek Vlaanderen) under grant number 12X8622N.

Author information

Authors and Affiliations

Authors

Contributions

ED designed the assays and conducted the experiments under the supervision of FVI, RD and EG. CC performed the DNA extraction procedures. Digital PCR was conducted at the Department of Morphology under the supervision of WDS. All authors read and approved the manuscript.

Corresponding author

Correspondence to Evelien Dierick.

Ethics declarations

Ethics approval

This article does not contain any studies with live animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 864 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dierick, E., Callens, C., De Spiegelaere, W. et al. Digital PCR: a tool in clostridial mutant selection and detection. Appl Microbiol Biotechnol 107, 6973–6983 (2023). https://doi.org/10.1007/s00253-023-12779-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-023-12779-8

Keywords

Navigation