Log in

Large-scale cultivation of Spirulina in a floating horizontal photobioreactor without aeration or an agitation device

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A low-cost floating photobioreactor (PBR) without the use of aeration and/or an agitation device, in which carbon was supplied in the form of bicarbonate and only wave energy was utilized for mixing, was developed in our previous study. Scaling up is a common challenge in the practical application of PBRs and has not yet been demonstrated for this new design. To fill this gap, cultivation of Spirulina platensis was conducted in this study. The results demonstrated that S. platensis had the highest productivity at 0.3 mol L−1 sodium bicarbonate, but the highest carbon utilization (104 ± 2.6%) was obtained at 0.1 mol L−1. Culture of Spirulina aerated with pure oxygen resulted in only minor inhibition of growth, indicating that its productivity will not be significantly reduced even if dissolved oxygen is accumulated to a high level due to intermittent mixing resulting from the use of wave energy. In cultivation using a floating horizontal photobioreactor at the 1.0 m2 scale, the highest biomass concentration of 2.24 ± 0.05 g L−1 was obtained with a culture depth of 5.0 cm and the highest biomass productivity of 18.9 g m−2 day−1 was obtained with a depth of 10.0 cm. This PBR was scaled up to 10 m2 (1000 L) with few challenges; biomass concentration and productivity during ocean testing were little different than those at the 1.0 m2 (100 L) scale. However, the larger PBR had an apparent carbon utilization efficiency of 45.0 ± 2.8%, significantly higher than the 39.4 ± 0.9% obtained at the 1 m2 scale. These results verified the ease of scaling up floating horizontal photobioreactors and showed their great potential in commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acien FG, Fernandez JM, Magan JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353

    Article  CAS  Google Scholar 

  • Banerjee S, Ramaswamy S (2017) Dynamic process model and economic analysis of microalgae cultivation in open raceway ponds. Algal Res 26:330–340

    Article  Google Scholar 

  • Barros AI, Goncalves AL, Simoes M, Pires JCM (2015) Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev 41:1489–1500

    Article  Google Scholar 

  • Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  CAS  Google Scholar 

  • Chen M, Blankenship RE (2011) Expanding the solar spectrum used by photosynthesis. Trends Plant Sci 16:427–431

    Article  CAS  Google Scholar 

  • Chen J, Wang Y, Benemann JR, Zhang X, Hu H, Qin S (2016) Microalgal industry in China: challenges and prospects. J Appl Phycol 28:715–725

    Article  CAS  Google Scholar 

  • Cheng J, Huang Y, Feng J, Sun J, Zhou J, Cen K (2013) Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors. Bioresour Technol 144:321–327

    Article  CAS  Google Scholar 

  • Chi Z, O’Fallon JV, Chen S (2011) Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol 29:537–541

    Article  CAS  Google Scholar 

  • Chi Z, **e Y, Elloy F, Zheng Y, Hu Y, Chen S (2013) Bicarbonate-based integrated carbon capture and algae production system with alkalihalophilic cyanobacterium. Bioresour Technol 133:513–521

    Article  CAS  Google Scholar 

  • Chi Z, Elloy F, **e Y, Hu Y, Chen S (2014) Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system. Appl Biochem Biotechnol 172:447–457

    Article  CAS  Google Scholar 

  • Da RG, Moraes L, Cardias BB, De SMR, Costa JA (2015) Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. Bioresour Technol 192:321–327

    Article  Google Scholar 

  • Daniel LC, Wang CLC, Demain AL, Dunnill P, Humphrey AE, Lilley MD (1979) Fermentation and enzyme technology. John Wiley & Sons Ltd, Chichester and New York

    Google Scholar 

  • Deamici KM, Santos LO, Costa J (2017) Magnetic field action on outdoor and indoor cultures of Spirulina: evaluation of growth, medium consumption and protein profile. Bioresour Technol 249:168–174

    Article  Google Scholar 

  • Dogaris I, Welch M, Meiser A, Walmsley L, Philippidis G (2015) A novel horizontal photobioreactor for high-density cultivation of microalgae. Bioresour Technol 198:316–324

    Article  CAS  Google Scholar 

  • Doucha J, Lívanský K (2012) Production of high-density Chlorella culture grown in fermenters. J Appl Phycol 24(1):35–43

    Article  CAS  Google Scholar 

  • Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335

    Article  CAS  Google Scholar 

  • Gao X, Kong B, Vigil RD (2015) Characteristic time scales of mixing, mass transfer and biomass growth in a Taylor vortex algal photobioreactor. Bioresour Technol 198:283–291

    Article  CAS  Google Scholar 

  • Garcia-Gonzalez M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115:81–90

    Article  CAS  Google Scholar 

  • Hoffman J, Pate RC, Drennen T, Quinn JC (2017) Techno-economic assessment of open microalgae production systems. Algal Res 23:51–57

    Article  Google Scholar 

  • Kim ZH, Park H, Hong S-J, Lim S-M, Lee C-G (2016) Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing. Bioprocess Biosyst Eng 39:713–723

    Article  CAS  Google Scholar 

  • Kim GY, Heo J, Kim HS, Han JI (2017) Bicarbonate-based cultivation of Dunaliella salina for enhancing carbon utilization efficiency. Bioresour Technol 237:72–77

    Article  CAS  Google Scholar 

  • Kusdiana D, Saka S (2004) Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour Technol 91:289–295

    Article  CAS  Google Scholar 

  • Lee Chang KJ, Rye L, Dunstan GA, Grant T, Koutoulis A, Nichols PD, Blackburn SI (2015) Life cycle assessment: heterotrophic cultivation of Thraustochytrids for biodiesel production. J Appl Phycol 27:639–647

    Article  Google Scholar 

  • Licheng P, Lan CQ, Zisheng Z (2013) Evolution, detrimental effects, and removal of oxygen in microalga cultures: a review. Environ Prog Sustain 32:982–988

    Article  Google Scholar 

  • Lowrey J, Armenta RE, Brooks MS (2016) Nutrient and media recycling in heterotrophic microalgae cultures. Appl Microbiol Biotechnol 100:1061–1075

    Article  CAS  Google Scholar 

  • Lu Y-M, **ang W-Z, Wen Y-H (2011) Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J Appl Phycol 23:265–269

    Article  Google Scholar 

  • Mani JS (1991) Design of Y-frame floating breakwater. J Waterw Coast 117:105–119

    Article  Google Scholar 

  • Millero FJ, Graham TB, Huang F, Bustos-Serrano H, Pierrot D (2006) Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar Chem 100:80–94

    Article  CAS  Google Scholar 

  • Najafpour GD (2007) Biochemical engineering and biotechnology. Elsevier, Oxford, UK

    Google Scholar 

  • Norsker N-H, Barbosa MJ, Vermue MH, Wijffels RH (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29:24–27

    Article  CAS  Google Scholar 

  • Novoveska L, Zapata AKM, Zabolotney JB, Atwood MC, Sundstrom ER (2016) Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Res 18:86–94

    Article  Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506

    Article  CAS  Google Scholar 

  • Olguin EJ, Galicia S, Camacho R, Mercado G, Perez TJ (1997) Production of Spirulina sp. in sea water supplemented with anaerobic effluents in outdoor raceways under temperate climatic conditions. Appl Microbiol Biotechnol 48:242–247

    Article  CAS  Google Scholar 

  • Pancha I, Chokshi K, Ghosh T, Paliwal C, Maurya R, Mishra S (2015) Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 193:315–323

    Article  CAS  Google Scholar 

  • Patidar SK, Mitra M, Goel S, Mishra S (2016) Effect of carbon supply mode on biomass and lipid in CSMCRI's Chlorella variabilis (ATCC 12198). Biomass Bioenergy 86:1–10

    Article  CAS  Google Scholar 

  • Pirasaci T, Manisali AY, Dogaris I, Philippidis G, Sunol AK (2017) Hydrodynamic design of an enclosed Horizontal BioReactor (HBR) for algae cultivation. Algal Res 28:57–65

    Article  Google Scholar 

  • Quinn JC, Yates T, Douglas N, Weyer K, Butler J, Bradley TH, Lammers PJ (2012) Nannochloropsis production metrics in a scalable outdoor photobioreactor for commercial applications. Bioresour Technol 117:164–171

    Article  CAS  Google Scholar 

  • Sánchez Mirón A, Cerón García MC, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297

    Article  Google Scholar 

  • Santos AM, Janssen M, Lamers PP, Evers WAC, Wijffels RH (2012) Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions. Bioresour Technol 104:593–599

    Article  CAS  Google Scholar 

  • Santos AM, Lamers PP, Janssen M, Wijffels RH (2013) Biomass and lipid productivity of Neochloris oleoabundans under alkaline-saline conditions. Algal Res 2:204–211

    Article  Google Scholar 

  • Smetana S, Sandmann M, Rohn S, Pleissner D, Heinz V (2017) Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment. Bioresour Technol 245:162–170

    Article  CAS  Google Scholar 

  • Soni RA, Sudhakar K, Rana RS, Soni RA, Sudhakar K, Rana RS, Soni RA, Sudhakar K, Rana RS (2017) Spirulina—from growth to nutritional product: a review. Trends Food Sci Technol 69:157–171

    Article  CAS  Google Scholar 

  • Vonshak A, Torzillo G, Accolla P, Tomaselli L (1996) Light and oxygen stress in Spirulina platensis (cyanobacteria) grown outdoors in tubular reactors. Physiol Plantarum 97:175–179

    Article  CAS  Google Scholar 

  • Wolf-Gladrow DA, Zeebe RE, Klaas C, Körtzinger A, Dickson AG (2007) Total alkalinity: the explicit conservative expression and its application to biogeochemical processes. Mar Chem 106:287–300

    Article  CAS  Google Scholar 

  • Zhu H, Zhu C, Cheng L, Chi Z (2017) Plastic bag as horizontal photobioreactor on rocking platform driven by water power for culture of alkalihalophilic cyanobacterium. Bioresour Bioproc 4:46

    Article  Google Scholar 

  • Zhu C, Zhu H, Cheng L, Chi Z (2018) Bicarbonate-based carbon capture and algal production system on ocean with floating inflatable-membrane photobioreactor. J Appl Phycol 30:875–885

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanyou Chi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical statement

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Zhai, X., Wang, J. et al. Large-scale cultivation of Spirulina in a floating horizontal photobioreactor without aeration or an agitation device. Appl Microbiol Biotechnol 102, 8979–8987 (2018). https://doi.org/10.1007/s00253-018-9258-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9258-0

Keywords

Navigation