Log in

Improvement in the thermostability of a type A feruloyl esterase, AuFaeA, from Aspergillus usamii by iterative saturation mutagenesis

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Feruloyl or ferulic acid esterase (Fae, EC 3.1.1.73) catalyzes the hydrolysis of ester bonds between polysaccharides and phenolic acid compounds in xylan side chain. In this study, the thermostability of a type A feruloyl esterase (AuFaeA) from Aspergillus usamii was increased by iterative saturation mutagenesis (ISM). Two amino acids, Ser33 and Asn92, were selected for saturation mutagenesis according to the B-factors analyzed by B-FITTER software and ΔΔG values predicted by PoPMuSiC algorithm. After screening the saturation mutagenesis libraries constructed in Pichia pastoris, 15 promising variants were obtained. The best variant S33E/N92-4 (S33E/N92R) produced a T m value of 44.5 °C, the half-lives (t 1/2) of 35 and 198 min at 55 and 50 °C, respectively, corresponding to a 4.7 °C, 2.33- and 3.96-fold improvement compared to the wild type. Additionally, the best S33 variant S33-6 (S33E) was thermostable at 50 °C with a t 1/2 of 82 min, which was 32 min longer than that of the wild type. All the screened S33E/N92 variants were more thermostable than the best S33 variant S33-6 (S33E). This work would contribute to the further studies on higher thermostability modification of type A feruloyl esterases, especially those from fungi. The thermostable feruloyl esterase variants were expected to be potential candidates for industrial application in prompting the enzymic degradation of plant biomass materials at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abokitse K, Wu M, Bergeron H, Grosse S, Lau PCK (2010) Thermostable feruloyl esterase for the bioproduction of ferulic acid from triticale bran. Appl Microbiol Biotechnol 87:195–203

    Article  CAS  PubMed  Google Scholar 

  • Badieyan S, Bevan DR, Zhang C (2012) Study and design of stability in GH5 cellulases. Biotechnol Bioeng 109:31–44

    Article  CAS  PubMed  Google Scholar 

  • Bai W, Zhou C, Xue Y, Huang CH, Guo RT, Ma Y (2014) Three-dimensional structure of an alkaline xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5 and improvement of its thermal performance by introducing arginines substitutions. Biotechnol Lett 36:1495–1501

    Article  CAS  PubMed  Google Scholar 

  • Balasco N, Esposito L, Simone AD, Vitagliano L (2013) Role of loops connecting secondary structure elements in the stabilization of proteins isolated from thermophilic organisms. Protein Sci 22:1016–1023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen CC, Luo HL, Han X, Lv P, Ko TP, Peng W, Huang CH, Wang K, Gao J, Zheng Y, Yang Y, Zhang J, Yao B, Guo RT (2014) Structural perspectives of an engineered β-1,4-xylanase with enhanced thermostability. J Biotechnol 189:175–182

    Article  CAS  PubMed  Google Scholar 

  • Crepin VF, Faulds CB, Connerton IF (2004) Functional classification of the microbial esterases. Appl Microbiol Biotechnol 63:647–652

    Article  CAS  PubMed  Google Scholar 

  • Dehouck Y, Kwasigroch JM, Gilis D, Rooman M (2011) PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics 12:151

    Article  PubMed Central  PubMed  Google Scholar 

  • Faulds CB (2010) What can feruloyl esterases do for us? Phytochem Rev. 9:121–132

    Article  CAS  Google Scholar 

  • Fei B, Xu H, Cao Y, Ma S, Guo H, Song T, Qiao D, Cao Y (2013) A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase. J Ind Microbiol Biotechnol 40:457–464

    Article  CAS  PubMed  Google Scholar 

  • Fernández L, Jiao N, Soni P, Gumulya Y, de Oliveira LG, Reetz MT (2010) An efficient method for mutant library creation in Pichia pastoris useful in directed evolution. Biocatal Biotransfor 28:122–129

    Article  Google Scholar 

  • Gong YY, Yin X, Zhang HM, Wu MC, Tang CD, Wang JQ, Pang QF (2013) Cloning, expression of a feruloyl esterase from Aspergillus usamii E001 and its applicability in generating ferulic acid from wheat bran. J Ind Microbiol Biotechnol 40:1433–1441

    Article  CAS  PubMed  Google Scholar 

  • Hegde S, Srinivas P, Muralikrishna G (2009) Singe-step synthesis of 4-nitrophenyl ferulate for spectrophotometric assay of feruloyl esterases. Anal Biochem 387:128–129

    Article  CAS  PubMed  Google Scholar 

  • Hermoso JA, Sanz-Aparicio J, Molina R, Juge N, González R, Faulds CB (2004) The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family. J Mol Biol 338:495–506

    Article  CAS  PubMed  Google Scholar 

  • Jain PC, Varadarajan R (2014) A rapid, efficient, and economical inverse polymerase chain reaction-based method for generating a site saturation mutant library. Anal Biochem 449:90–98

    Article  CAS  PubMed  Google Scholar 

  • Jun C, Joo JC, Lee JH, Kim YH (2014) Thermostabilization of glutamate decarboxylase B from Escherichia coli by structure-guided design of its pH-responsive N-terminal interdomain. J Biotechnol 174:22–28

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Joo JC, Yoo YJ (2012) Hydrophobic interaction network analysis for thermostabilization of a mesophilic xylanase. J Biotechnol 161:49–59

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tsai CJ, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13:179–191

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cirino PC (2014) Recent advances in engineering proteins for biocatalysis. Biotechnol Bioeng 111:1273–1287

    Article  CAS  PubMed  Google Scholar 

  • Mastihuba V, Kremnický L, Mastihubová M, Willett JL, Côté GL (2002) A spectrophotometric assay for feruloyl esterases. Anal Biochem 309:96–101

    Article  CAS  PubMed  Google Scholar 

  • Pack SP, Yoo YJ (2004) Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins. J Biotechnol 111:269–277

    Article  CAS  PubMed  Google Scholar 

  • Rakotoarivonina H, Hermant B, Chabbert B, Touzel JP, Remond C (2011) A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls. Appl Microbiol Biotechnol 90:541–552

    Article  CAS  PubMed  Google Scholar 

  • Reetz MT, Carballeira JD, Vogel A (2006) Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Edit 45:7745–7751

    Article  CAS  Google Scholar 

  • Reetz MT, Soni P, Fernández L, Gumulya Y, Carballeira JD (2010) Increasing the stability of an enzyme toward hostile organic solvents by directed evolution based on iterative saturation mutagenesis using the B-FIT method. Chem Commun 46:8657–8658

    Article  CAS  Google Scholar 

  • Sanchis J, Fernández L, Carballeira JD, Drone J, Gumulya Y, Höbenreich H, Kahakeaw D, Kille S, Lohmer R, Peyralans JJ, Podtetenieff J, Prasad S, Soni P, Taglieber A, Wu S, Zilly FE, Reetz MT (2008) Improved PCR method for the creation of saturation mutagenesis libraries in directed evolution: application to difficult-to-amplify templates. Appl Microbiol Biotechnol 81:387–397

    Article  CAS  PubMed  Google Scholar 

  • Saunders HM, Gilis D, Rooman M, Dehouck Y, Robertson AL, Bottomley SP (2011) Flanking domain stability modulates the aggregation kinetics of a polyglutamine disease protein. Protein Sci 20:1675–1681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  CAS  PubMed  Google Scholar 

  • Silva IR, Larsen DM, Jers C, Derkx P, Meyer AS, Mikkelsen JD (2013) Enhancing RGI lyase thermostability by targeted single point mutations. Appl Microbiol Biotechnol 97:9727–9735

    Article  CAS  PubMed  Google Scholar 

  • Stephens DE, Khan FI, Singh P, Bisetty K, Singh S, Permaul K (2014) Creation of thermostable and alkaline stable xylanase variants by DNA shuffling. J Biotechnol 187:139–146

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi N, Nakayama S, Kawakami T, Murakami H (2013) Patch cloning method for multiple site-directed and saturation mutagenesis. BMC Biotechnol 13:91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor TJ, Vaisman II (2010) Discrimination of thermophilic and mesophilic proteins. BMC Struct Biol 10(Suppl 1):S5

    Article  PubMed Central  PubMed  Google Scholar 

  • Tian J, Wang P, Gao S, Chu X, Wu N, Fan Y (2010) Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation. FEBS J 277:4901–4908

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Wang P, Huang L, Chu X, Wu N, Fan Y (2013) Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method. Appl Microbiol Biotechnol 97:2997–3006

    Article  CAS  PubMed  Google Scholar 

  • Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9–31

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang K, Luo H, Tian J, Turunen O, Huang H, Shi P, Hua H, Wang C, Wang S, Yao B (2014) Thermostability improvement of a Streptomyces xylanase by introducing proline and glutamic acid residues. Appl Microbiol Biotechnol 80:2158–2165

    Google Scholar 

  • Yin X, Li JF, Wang JQ, Tang CD, Wu MC (2013) Enhanced thermostability of a mesophilic xylanase by N-terminal replacement designed by molecular dynamics simulation. J Sci Food Agric 93:3016–3023

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Huang H (2014) Engineering proteins for thermostability through rigidifying flexible sites. Biotechnol Adv 32:308–315

    Article  CAS  PubMed  Google Scholar 

  • Zhang HM, Li JF, Wang JQ, Yang YJ, Wu MC (2014) Determinants for the improved thermostability of a mesophilic family 11 xylanase predicted by computational methods. Biotechnol Biofuels 7:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang SB, Pei XQ, Wu ZL (2012) Multiple amino acid substitutions significantly improve the thermostability of feruloyl esterase A from Aspergillus niger. Bioresource Technol 117:140–147

    Article  CAS  Google Scholar 

  • Zhang SB, Wu ZL (2011) Identification of amino acid residues responsible for increased thermostability of feruloyl eaterase A from Aspergillus niger using the PoPMuSiC algorithm. Bioresource Technol 102:2093–2096

    Article  CAS  Google Scholar 

  • Zhang SB, Zhai HC, Wang L, Yu GH (2013) Expression, purification and characterization of a feruloyl esterase A from Aspergillus flavus. Protein Expres Purif 92:36–40

    Article  CAS  Google Scholar 

  • Zheng H, Liu Y, Sun M, Han Y, Wang J, Sun J, Lu F (2014) Improvement of alkali stability and thermostability of Paenibacillus campinasensis family-11 xylanase by directed evolution and site-directed mutagenesis. J Ind Microbiol Biotechnol 41:153–162

    Article  PubMed  Google Scholar 

  • Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32:e115

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. **anzhang Wu (School of Biotechnology, Jiangnan University, Jiangsu, China) for providing technical assistance.

Funding

This work was financially supported by the Fundamental Research Fund for the Central Universities of China (No. JUDCF13011, JUSRP51412B), the Postgraduate Innovation Training Project of Jiangsu (No. CXZZ13_0757), and the National Training Programs of Innovation and Entrepreneurship for Undergraduates (201410295037).

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Chen Wu.

Additional information

**n Yin and Jian-Fang Li, the two first authors, contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Li, JF., Wang, CJ. et al. Improvement in the thermostability of a type A feruloyl esterase, AuFaeA, from Aspergillus usamii by iterative saturation mutagenesis. Appl Microbiol Biotechnol 99, 10047–10056 (2015). https://doi.org/10.1007/s00253-015-6889-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6889-2

Keywords

Navigation