Log in

Biochemical and molecular genetic characterisation of a novel laccase produced by the aquatic ascomycete Phoma sp. UHH 5-1-03

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A laccase from the aquatic ascomycete Phoma sp. UHH 5-1-03 (DSM 22425) was purified upon hydrophobic interaction and size exclusion chromatography (SEC). Mass spectrometric analysis of the laccase monomer yielded a molecular mass of 75.6 kDa. The enzyme possesses an unusual alkaline isoelectric point above 8.3. The Phoma sp. laccase undergoes pH-dependent dimerisation, with the dimer (∼150 kDa, as assessed by SEC) predominating in a pH range of 5.0 to 8.0. The enzyme oxidises common laccase substrates still at pH 7.0 and 8.0 and is remarkably stable at these pH values. The laccase is active at high concentrations of various organic solvents, all together indicating a considerable biotechnological potential. One laccase gene (lac1) identified at the genomic DNA level and transcribed in laccase-producing cultures was completely sequenced. The deduced molecular mass of the hypothetical protein and the predicted isoelectric point of 8.1 well agree with experimentally determined data. Tryptic peptides of electrophoretically separated laccase bands were analysed by nano-liquid chromatography–tandem mass spectrometry. By using the nucleotide sequence of lac1 as a template, eight different peptides were identified and yielded an overall sequence coverage of about 18%, thus confirming the link between lac1 and the expressed laccase protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  Google Scholar 

  • Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305

    Article  CAS  Google Scholar 

  • Beloqui A, Pita M, Polaina J, Martinez-Arias A, Golyshina OV, Zumarraga M, Yakimov MM, Garcia-Arellano H, Alcalde M, Fernandez VM, Elborough K, Andreu JM, Ballesteros A, Plou FJ, Timmis KN, Ferrer M, Golyshin PN (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem 281:22933–22942

    Article  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  • Benndorf D, Balcke GU, Harms H, von Bergen M (2007) Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J 1:224–234

    Article  CAS  Google Scholar 

  • Berka RM, Schneider P, Golightly EJ, Brown SH, Madden M, Brown KM, Halkier T, Mondorf K, Xu F (1997) Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Appl Environ Microbiol 63:3151–3157

    Article  CAS  Google Scholar 

  • Esser K, Minuth W (1970) The phenoloxidases of the ascomycete Podospora anserina. Communication IV. Genetic regulation of the formation of laccase. Genetics 64:441–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ettrich R, Kopecky V, Hofbauerova K, Baumruk V, Novak P, Pompach P, Man P, Plihal O, Kuty M, Kulik N, Sklenar J, Ryslava H, Kren V, Bezouska K (2007) Structure of the dimeric N-glycosylated form of fungal beta-N-acetylhexosaminidase revealed by computer modeling, vibrational spectroscopy, and biochemical studies. BMC Struct Biol 7:32–46

    Article  Google Scholar 

  • Faraco V, Ercole C, Festa G, Giardina P, Piscitelli A, Sannia G (2008) Heterologous expression of heterodimeric laccase from Pleurotus ostreatus in Kluyveromyces lactis. Appl Microbiol Biotechnol 77:1329–1335

    Article  CAS  Google Scholar 

  • Fernandez-Larrea J, Stahl U (1996) Isolation and characterization of a laccase gene from Podospora anserina. Mol Gen Genet 252:539–551

    CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) The proteomics protocols handbook. Humana, Totowa

    Google Scholar 

  • Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediat J 3:1–26

    Article  CAS  Google Scholar 

  • Giardina P, Palmieri G, Scaloni A, Fontanella B, Faraco V, Cennamo G, Sannia G (1999) Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem J 341:655–663

    Article  CAS  Google Scholar 

  • Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326

    Article  CAS  Google Scholar 

  • Iyer G, Chattoo BB (2003) Purification and characterization of laccase from the rice blast fungus, Magnaporthe grisea. FEMS Microbiol Lett 227:121–126

    Article  CAS  Google Scholar 

  • Johannes C, Majcherczyk A (2000) Laccase activity tests and laccase inhibitors. J Biotechnol 78:193–199

    Article  CAS  Google Scholar 

  • Junghanns C, Krauss G, Schlosser D (2008a) Potential of aquatic fungi derived from diverse freshwater environments to decolourise synthetic azo and anthraquinone dyes. Bioresource Technol 99:1225–1235

    Article  CAS  Google Scholar 

  • Junghanns C, Parra R, Keshavarz T, Schlosser D (2008b) Towards higher laccase activities produced by aquatic ascomycetous fungi through combination of elicitors and an alternative substrate. Eng Life Sci 8:277–285

    Article  CAS  Google Scholar 

  • Kellner H, Jehmlich N, Benndorf D, Hoffmann R, Rühl M, Hoegger PJ, Majcherczyk A, Kües U, von Bergen M, Buscot F (2007a) Detection, quantification and identification of fungal extracellular laccases using polyclonal antibody and mass spectrometry. Enzyme Microb Tech 41:694–701

    Article  CAS  Google Scholar 

  • Kellner H, Luis P, Buscot F (2007b) Diversity of laccase-like multicopper oxidase genes in Morchellaceae: identification of genes potentially involved in extracellular activities related to plant litter decay. FEMS Microbiol Ecol 61:153–163

    Article  CAS  Google Scholar 

  • Kiiskinen LL, Saloheimo M (2004) Molecular cloning and expression in Saccharomyces cerevisiae of laccase gene from the ascomycete Melanocarpus albomyces. Appl Environ Microbiol 70:137–144

    Article  CAS  Google Scholar 

  • Kiiskinen LL, Viikari L, Kruus K (2002) Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces. Appl Microbiol Biotechnol 59:198–204

    Article  CAS  Google Scholar 

  • Liers C, Ullrich R, Pecyna M, Schlosser D, Hofrichter M (2007) Production, purification and partial enzymatic and molecular characterization of a laccase from the wood-rotting ascomycete Xylaria polymorpha. Enzyme Microb Tech 41:785–793

    Article  CAS  Google Scholar 

  • Lin C-T, Lin M-T, Chen Y-T, Shaw J-F (1995) Subunit interaction enhances enzyme activity and stability of sweet potato cytosolic Cu/Zn-superoxide dismutase purified by a His-tagged recombinant protein method. Plant Mol Biol 28:303–311

    Article  CAS  Google Scholar 

  • Litvintseva AP, Henson JM (2002) Cloning, characterization, and transcription of three laccase genes from Gaeumannomyces graminis var. tritici, the take-all fungus. Appl Environ Microbiol 68:1305–1311

    Article  CAS  Google Scholar 

  • Martin C, Pecyna M, Kellner H, Jehmlich N, Junghanns C, Benndorf D, von Bergen M, Schlosser D (2007) Purification and biochemical characterization of a laccase from the aquatic fungus Myrioconium sp. UHH 1–13-18–4 and molecular analysis of the laccase-encoding gene. Appl Microbiol Biotechnol 77:613–624

    Article  CAS  Google Scholar 

  • Neuhoff V, Stamm R, Eibl H (1985) Clear background and highly sensitive protein staining with coomassie blue dyes in polyacrylamide gels: A systematic analysis. Electrophoresis 6:427–448

    Article  CAS  Google Scholar 

  • Perry CR, Matcham SE, Wood DA, Thurston CF (1993) The structure of laccase protein and its synthesis by the commercial mushroom Agaricus bisporus. J Gen Microbiol 139:171–178

    Article  CAS  Google Scholar 

  • Reid ID, Paice MG (1994) Biological bleaching of kraft pulps by white-rot fungi and their enzymes. FEMS Microbiol Rev 13:369–375

    Article  CAS  Google Scholar 

  • Reinhammar B (1970) Purification and properties of laccase and stellacyanin from Rhus vernicifera. BBA-Bioenergetics 205:35–47

    Article  CAS  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    Article  CAS  Google Scholar 

  • Robles A, Lucas R, Martinez-Canamero M, Ben Omar N, Perez R, Galvez A (2002) Characterisation of laccase activity produced by the hyphomycete Chalara (syn. Thielaviopsis) paradoxa CH32. Enzyme Microb Tech 31:516–522

    Article  CAS  Google Scholar 

  • Rogalski J, Dawidowicz A, Jozwik E, Leonowicz A (1999) Immobilization of laccase from Cerrena unicolor on controlled porosity glass. J Mol Catal B: Enzym 6:29–39

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Shapiro MB, Senapathy P (1987) RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 15:7155–7174

    Article  CAS  Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanova L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67

    Article  Google Scholar 

  • Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Shevchenko A, Boucherie H, Mann M (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 93:14440–14445

    Article  CAS  Google Scholar 

  • Trovaslet M, Enaud E, Guiavarc'h Y, Corbisier A-M, Vanhulle S (2007) Potential of a Pycnoporus sanguineus laccase in bioremediation of wastewater and kinetic activation in the presence of an anthraquinonic acid dye. Enzyme Microb Tech 41:368–376

    Article  CAS  Google Scholar 

  • Wahleithner JA, Xu F, Brown K, Brown S, Golightly E, Halkier T, Kauppinen S, Pederson A, Schneider P (1996) The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr Genet 29:395–403

    Article  CAS  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Article  CAS  Google Scholar 

  • Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. BBA-Protein Struct M 1292:303–311

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding of this study by the European Commission within the frame of the Integrated Project SOPHIED (NMP2-CT-2004-505899) of the 6th framework programme. Many thanks to A. Bazes, E. Enaud, M. Trovaslet, S. Vanhulle (all Université Catholique de Louvain, Louvain-la-Neuve, Belgium) and H. Kellner (University Gembloux, Belgium) for fruitful discussions. Furthermore, we want to thank R. Bötz (UFZ) for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Schlosser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junghanns, C., Pecyna, M.J., Böhm, D. et al. Biochemical and molecular genetic characterisation of a novel laccase produced by the aquatic ascomycete Phoma sp. UHH 5-1-03. Appl Microbiol Biotechnol 84, 1095–1105 (2009). https://doi.org/10.1007/s00253-009-2028-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2028-2

Keywords

Navigation