Log in

The identification, purification, and characterization of STXF10 expressed in Streptomyces thermonitrificans NTU-88

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Multiple xylanolytic enzymes of Streptomyces thermonitrificans NTU-88 were induced by oat-spelt xylan and separated by two-dimensional polyacrylamide and zymogram gels. Nineteen clear spots differed in pI and molecular weight values were found on the zymogram, and only spot one was seen on the corresponding silver-stained gel. These results revealed that multiple xylanases were secreted when S. thermonitrificans NTU-88 was induced and the spot (STXF10), identified as being a glycosyl hydrolase family 10 xylanase, was the predominant one among xylanases. STXF10 showed a tolerance for high temperatures and broad pH ranges and high affinity and hydrolysis efficiency for xylans. Furthermore, it also featured the minor ability to degrade different lignocellulosic substrates. Although S. thermonitrificans NTU-88 possesses multiple xylanases, our results suggest that the major form of xylanase might be selectively and specifically induced depending on the type of substrate to which the microorganism is exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arias E, Li H, Morosoli R (2007) Effect of protease mutations on the production of xylanases in Streptomyces lividans. Can J Microbiol 53:695–701

    Article  CAS  Google Scholar 

  • Biely P, Markovic O, Mislovicova D (1985) Sensitive detection of endo-1,4-beta-glucanases and endo-1,4-beta-xylanases in gels. Anal Biochem 144:147–151

    Article  CAS  Google Scholar 

  • Calero-Nieto F, Di Pietro A, Roncero MI, Hera C (2007) Role of the transcriptional activator xlnR of Fusarium oxysporum in regulation of xylanase genes and virulence. Mol Plant Microbe Interact 20:977–985

    Article  CAS  Google Scholar 

  • Chen YL, Tang TY, Cheng KJ (2001) Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can J Microbiol 47:1088–1094

    Article  CAS  Google Scholar 

  • Chen YC, Tsai CY, Wang PM, Chiang YC, Huang HK, Yang SS, Cheng HL (2006) The studies of xylanases produced by Streptomyces thermonitrificans NTU-88. J Biomass Energy Soc China 25:33–39

    CAS  Google Scholar 

  • Cheng HL, Tsai LC, Lin SS, Yuan HS, Yang NS, Lee SH, Shyur LF (2002) Mutagenesis of Trp(54) and Trp(203) residues on Fibrobacter succinogenes 1,3-1,4-beta-d-glucanase significantly affects catalytic activities of the enzyme. Biochemistry 41:8759–8766

    Article  CAS  Google Scholar 

  • Cheng HL, Wang PM, Chen YC, Yang SS, Chen YC (2008) Cloning, characterization and phylogenetic relationships of stxI, a endoxylanase-encoding gene from Streptomyces thermonitrificans NTU-88. Bioresour Technol 99:227–231

    Article  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  Google Scholar 

  • Ducros V, Charnock SJ, Derewenda U, Derewenda ZS, Dauter Z, Dupont C, Shareck F, Morosoli R, Kluepfel D, Davies GJ (2000) Substrate specificity in glycoside hydrolase family 10. Structural and kinetic analysis of the Streptomyces lividans xylanase 10A. J Biol Chem 275:23020–23026

    Article  CAS  Google Scholar 

  • Elegir G, Szakacs G, Jeffries TW (1994) Purification, characterization, and substrate specificities of multiple xylanases from Streptomyces sp. strain B-12-2. Appl Environ Microbiol 60:2609–2615

    Article  CAS  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    Article  CAS  Google Scholar 

  • Jang HD, Chen KS (2003) Production and characterization of thermostable cellulases from Streptomyces transformant T3-1. World J Microbiol Biotechnol 19:263–268

    Article  CAS  Google Scholar 

  • Jun HS, Ha JK, Malburg LM Jr., Verrinder GA, Forsberg CW (2003) Characteristics of a cluster of xylanase genes in Fibrobacter succinogenes S85. Can J Microbiol 49:171–180

    Article  CAS  Google Scholar 

  • Kluepfel D, Vats-Mehta S, Aumont F, Shareck F, Morosoli R (1990) Purification and characterization of a new xylanase (xylanase B) produced by Streptomyces lividans 66. Biochem J 267:45–50

    Article  CAS  Google Scholar 

  • Li XL, Zhang ZQ, Dean JF, Eriksson KE, Ljungdahl LG (1993) Purification and characterization of a new xylanase (APX-II) from the fungus Aureobasidium pullulans Y-2311-1. Appl Environ Microbiol 59:3212–3218

    Article  CAS  Google Scholar 

  • Lin J, Ndlovu LM, Singh S, Pillay B (1999) Purification and biochemical characteristics of beta-d-xylanase from a thermophilic fungus, Thermomyces lanuginosus-SSBP. Biotechnol Appl Biochem 30:73–79

    CAS  PubMed  Google Scholar 

  • Liu L, Zhang J, Chen B, Shao W (2004) Principle component analysis in F/10 and G/11 xylanase. Biochem Biophys Res Commun 322:277–280

    Article  CAS  Google Scholar 

  • Oda K, Kakizono D, Yamada O, Iefuji H, Akita O, Iwashita K (2006) Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol 72:3448–3457

    Article  CAS  Google Scholar 

  • Pason P, Kyu KL, Ratanakhanokchai K (2006) Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl Environ Microbiol 72:2483–2490

    Article  CAS  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  Google Scholar 

  • Peters S, Koschinsky S, Schwieger F, Tebbe CC (2000) Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol 66:930–936

    Article  CAS  Google Scholar 

  • Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  Google Scholar 

  • Ruiz-Arribas A, Zhadan GG, Kutyshenko VP, Santamaria RI, Cortijo M, Villar E, Fernandez-Abalos JM, Calvete JJ, Shnyrov VL (1998) Thermodynamic stability of two variants of xylanase (Xys1) from Streptomyces halstedii JM8. Eur J Biochem 253:462–468

    Article  CAS  Google Scholar 

  • Ryckeboer J, Mergaert J, Vaes K, Klammer S, de Clercq D, Coosemans J, Insam H, Swings J (2003) A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 53:349–410

    Google Scholar 

  • Sabounchi-Schutt F, Astrom J, Olsson I, Eklund A, Grunewald J, Bjellqvist B (2000) An immobiline DryStrip application method enabling high-capacity two-dimensional gel electrophoresis. Electrophoresis 21:3649–3656

    Article  CAS  Google Scholar 

  • Sachslehner A, Nidetzky B, Kulbe KD, Haltrich D (1998) Induction of mannanase, xylanase, and endoglucanase activities in Sclerotium rolfsii. Appl Environ Microbiol 64:594–600

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  • Saraswat V, Bisaria VS (2000) Purification, characterization and substrate specificities of xylanase isoenzymes from Melanocarpus albomyces IIS 68. Biosci Biotechnol Biochem 64:1173–1180

    Article  CAS  Google Scholar 

  • Theather RM, Wood PJ (1982) Use of Congo red–polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 37:777–780

    Article  Google Scholar 

  • Wong KK, Tan LU, Saddler JN (1988) Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Chen H, Gao H, Li Z (2001) Bioconversion of corn straw by coupling ensiling and solid-state fermentation. Bioresour Technol 78:277–280

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The financial support of the National Science Council of Taiwan (Grant No. NSC 96-2313-B-020-011-MY3) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yo-Chia Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, HL., Tsai, CY., Chen, HJ. et al. The identification, purification, and characterization of STXF10 expressed in Streptomyces thermonitrificans NTU-88. Appl Microbiol Biotechnol 82, 681–689 (2009). https://doi.org/10.1007/s00253-008-1803-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1803-9

Keywords

Navigation