Log in

afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Two-component system AfsQ1-Q2 of Streptomyces coelicolor was identified previously for its ability to stimulate actinorhodin (ACT) and undecylprodigiosin (RED) production in Streptomyces lividans. However, disruption of either afsQ1 or afsQ2 in S. coelicolor led to no detectable changes in secondary metabolite formation or morphogenesis. In this study, we reported that, when cultivated on defined minimal medium (MM) with glutamate as the sole nitrogen source, the afsQ mutant exhibited significantly decreased ACT, RED, and calcium-dependent antibiotic (CDA) production and rapid growth of aerial mycelium. In addition, we also found that deletion of sigQ, which is located upstream of afsQ1-Q2 and encodes a putative sigma factor, led to the precocious hyperproduction of these antibiotics and delayed formation of sporulating aerial mycelium in the same glutamate-based defined MM. Reverse-transcription polymerase chain reaction and egfp fusion analyses showed that the expression of sigQ was under control by afsQ. In addition, deletion of both afsQ-sigQ resulted in the phenotype identical to that of afsQ mutant. The results suggested that afsQ1-Q2 and sigQ worked together in the regulation of both antibiotic biosynthesis and morphological development, and sigQ might be responsible for antagonizing the function of AfsQ1-Q2 in S. coelicolor, however, in a medium-dependent manner. Moreover, the study showed that the medium-dependent regulation of antibiotic biosynthesis by AfsQ1-Q2-SigQ was through pathway-specific activator genes actII-ORF4, redD, and cdaR. The study provides new insights on regulation of antibiotic biosynthesis and morphological development in S. coelicolor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aceti DJ, Champness WC (1998) Transcriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci. J Bacteriol 180:3100–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adamidis T, Riggle P, Champness W (1990) Mutations in a new Streptomyces coelicolor locus which globally block antibiotic biosynthesis but not sporulation. J Bacteriol 172:2962–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson T, Brian P, Riggle P, Kong RQ, Champness W (1999) Genetic suppression analysis of non-antibiotic-producing mutants of the Streptomyces coelicolor absA locus. Microbiology 145:2343–2353

    Article  CAS  PubMed  Google Scholar 

  • Anderson TB, Brian P, Champness WC (2001) Genetic and transcriptional analysis of absA, an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor. Mol Microbiol 39:553–566

    Article  CAS  PubMed  Google Scholar 

  • Arias P, Fernandez-Moreno MA, Malpartida F (1999) Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181:6958–6968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Brian P, Riggle FJ, Santos RA, Champness WC (1996) Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative signal transduction system. J Bacteriol 178:3221–3231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraburtty R, White J, Takano E, Bibb M (1996) Cloning, characterization and disruption of a (p)ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2). Mol Microbiol 19:357–368

    Article  CAS  PubMed  Google Scholar 

  • Chang HM, Chen MY, Shieh YT, Bibb MJ, Chen CW (1996) The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Mol Microbiol 21:1075–1085

    CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher SH (1999) Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference!. Mol Microbiol 32:223–232

    Article  CAS  PubMed  Google Scholar 

  • Fisher SH, Sonenshein AL (1991) Control of carbon and nitrogen-metabolism in Bacillus subtilis. Annu Rev Microbiol 45:107–135

    Article  CAS  PubMed  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoch JA (2000) Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170

    Article  CAS  PubMed  Google Scholar 

  • Hong HJ, Paget MSB, Buttner MJ (2002) A signal transduction system in Streptomyces coelicolor that activates the expression of a putative cell wall glycan operon in response to vancomycin and other cell wall-specific antibiotics. Mol Microbiol 44:1199–1211

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi S, Beppu T (1992) Autoregulatory factors and communication in Actinomycetes. Annu Rev Microbiol 46:377–398

    Article  CAS  PubMed  Google Scholar 

  • Hutchings MI, Hoskisson PA, Chandra G, Buttner MJ (2004) Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 150:2795–2806

    Article  CAS  PubMed  Google Scholar 

  • Hutchings MI, Hong HJ, Buttner MJ (2006a) The vancomycin resistance VanRS two-component signal transduction system of Streptomyces coelicolor. Mol Microbiol 59:923–935

    Article  CAS  PubMed  Google Scholar 

  • Hutchings MI, Hong HJ, Leibovitz E, Sutcliffe IC, Buttner MJ (2006b) The sigma(E) cell envelope stress response of Streptomyces coelicolor is influenced by a novel lipoprotein, CseA. J Bacteriol 188:7222–7229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Ishizuka H, Horinouchi S, Kieser HM, Hopwood DA, Beppu T (1992) A putative 2-component regulatory system involved in secondary metabolism in Streptomyces spp. J Bacteriol 174:7585–7594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieser T, Bibb MJ, Buttler MJ, Chater K, Hopwood D (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Lu YH, Wang WH, Shu D, Zhang WW, Chen L, Qin ZJ, Yang S, Jiang WH (2007) Characterization of a novel two-component regulatory system involved in the regulation of both actinorhodin and a type I polyketide in Streptomyces coelicolor. Appl Microbiol Biotechnol 77:625–635

    Article  CAS  PubMed  Google Scholar 

  • Ma HT, Kendall K (1994) Cloning and analysis of a gene-cluster from Streptomyces coelicolor that causes accelerated aerial mycelium formation in Streptomyces lividans. J Bacteriol 176:3800–3811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maheswaran M, Forchhammer K (2003) Carbon-source-dependent nitrogen regulation in Escherichia coli is mediated through glutamine-dependent GlnB signalling. Microbiology 149:2163–2172

    Article  CAS  PubMed  Google Scholar 

  • McKenzie NL, Nodwell JR (2007) Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol 189:5284–5292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno T (1997) Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res 4:161–168

    Article  CAS  PubMed  Google Scholar 

  • Mizuno T (2005) Two-component phosphorelay signal transduction systems in plants: from hormone responses to circadian rhythms. Biosci Biotechnol Biochem 69:2263–2276

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paget MSB, Chamberlin L, Atrih A, Foster SJ, Buttner MJ (1999a) Evidence that the extracytoplasmic function sigma factor sigma(E) is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181:204–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paget MSB, Leibovitz E, Buttner MJ (1999b) A putative two-component signal transduction system regulates sigma(E), a sigma factor required for normal cell wall integrity in Streptomyces coelicolor A3(2). Mol Microbiol 33:97–107

    Article  CAS  PubMed  Google Scholar 

  • Parkinson JS, Kofoid EC (1992) Communication Modules in bacterial signaling proteins. Annu Rev Genet 26:71–112

    Article  CAS  PubMed  Google Scholar 

  • Redenbach M, Kieser HM, Denapaite D, Eichner A, Cullum J, Kinashi H, Hopwood DA (1996) A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Garcia A, Barreiro C, Santos-Beneit F, Sola-Landa A, Martin JF (2007) Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a Delta phoP mutant. Proteomics 7:2410–2429

    Article  CAS  PubMed  Google Scholar 

  • Ryding NJ, Anderson TB, Champness WC (2002) Regulation of the Streptomyces coelicolor calcium-dependent antibiotic by absA, encoding a cluster-linked two-component system. J Bacteriol 184:794–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheeler NL, MacMillan SV, Nodwell JR (2005) Biochemical activities of the absA two-component system of Streptomyces coelicolor. J Bacteriol 187:687–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sola-Landa A, Moura RS, Martin JF (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A 100:6133–6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sola-Landa A, Rodriguez-Garcia A, Franco-Dominguez E, Martin JF (2005) Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol 56:1373–1385

    Article  CAS  PubMed  Google Scholar 

  • Sola-Landa A, Rodriguez-Garci A, Apel AK, Martin JF (2008) Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor. Nucleic Acids Res 36:1358–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JH, Kelemen GH, Fernandez-Abalos JM, Bibb MJ (1999) Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiology 145:2221–2227

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Gramajo HC, Strauch E, Andres N, White J, Bibb MJ (1992) Transcriptional regulation of the RedD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol 6:2797–2804

    Article  CAS  PubMed  Google Scholar 

  • Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13:52–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umeyama T, Horinouchi S (2001) Autophosphorylation of a bacterial serine/threonine kinase, AfsK, is inhibited by KbpA, an AfsK-binding protein. J Bacteriol 183:5506–5512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WW, Gao J, Chiao JS, Zhao GP, Jiang WH (2004) A novel two-component system amrB-amkB involved in the regulation of central carbohydrate metabolism in rifamycin SV-producing Amycolatopsis mediterranei U32. Curr Microbiol 48:14–19

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Jiang WH, Yang YL, Chiao JS (2004) Improvement of transformation and electroduction in avermectin high-producer, Streptomyces avermitilis. Folia Microbiol 49:399–405

    Article  Google Scholar 

  • White J, Bibb M (1997) bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J Bacteriol 179:627–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WW, Shi L (2005) Distribution and evolution of multiple-step phosphorelay in prokaryotes: lateral domain recruitment involved in the formation of hybrid-type histidine kinases. Microbiology 151:2159–2173

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (30770023, 30700022), the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-G-007), and the National Basic Research Program of China (2007CB707803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinhua Lu or Weihong Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Primers used in the construction of deletion mutants and gene overexpression in this study (DOC 40 kb)

Supplementary Table 2

List of primers used in RT-PCR analysis (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, D., Chen, L., Wang, W. et al. afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor . Appl Microbiol Biotechnol 81, 1149–1160 (2009). https://doi.org/10.1007/s00253-008-1738-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1738-1

Keywords

Navigation